login
Expansion of g.f.: (1+x)/(1-15*x).
50

%I #26 Sep 08 2022 08:45:49

%S 1,16,240,3600,54000,810000,12150000,182250000,2733750000,41006250000,

%T 615093750000,9226406250000,138396093750000,2075941406250000,

%U 31139121093750000,467086816406250000,7006302246093750000,105094533691406250000,1576418005371093750000,23646270080566406250000

%N Expansion of g.f.: (1+x)/(1-15*x).

%H Vincenzo Librandi, <a href="/A170735/b170735.txt">Table of n, a(n) for n = 0..800</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (15).

%F a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*16^k. - _Philippe Deléham_, Dec 04 2009

%F a(0) = 1; for n>0, a(n) = 16*15^(n-1). - _Vincenzo Librandi_, Dec 05 2009

%F a(0)=1, a(1)=16, a(n) = 15*a(n-1). - _Vincenzo Librandi_, Dec 10 2012

%F E.g.f.: (16*exp(15*x) - 1)/15. - _G. C. Greubel_, Sep 23 2019

%p seq(`if`(n=0, 1, 16*15^(n-1)), n=0..20); # _G. C. Greubel_, Sep 23 2019

%t Join[{1},16*15^Range[0,25]] (* _Vladimir Joseph Stephan Orlovsky_, Jul 13 2011 *)

%t CoefficientList[Series[(1+x)/(1-15x), {x, 0, 30}], x] ( * _Vincenzo Librandi_, Dec 10 2012 *)

%t Join[{1},NestList[15#&,16,20]] (* _Harvey P. Dale_, Sep 25 2015 *)

%o (Magma) [1] cat[16*15^(n-1): n in [1..20]]; // _Vincenzo Librandi_, Dec 10 2012

%o (PARI) vector(20, n, if(n==1, 1, 16*15^(n-2))) \\ _G. C. Greubel_, Sep 23 2019

%o (Sage) [1]+[16*15^(n-1) for n in (1..20)] # _G. C. Greubel_, Sep 23 2019

%o (GAP) Concatenation([1], List([1..20], n-> 16*15^(n-1) )); # _G. C. Greubel_, Sep 23 2019

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Dec 04 2009