login
A170649
Number of reduced words of length n in Coxeter group on 16 generators S_i with relations (S_i)^2 = (S_i S_j)^49 = I.
0
1, 16, 240, 3600, 54000, 810000, 12150000, 182250000, 2733750000, 41006250000, 615093750000, 9226406250000, 138396093750000, 2075941406250000, 31139121093750000, 467086816406250000, 7006302246093750000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170735, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, -105).
FORMULA
G.f.: (t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 +
2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(105*t^49 - 14*t^48 - 14*t^47 - 14*t^46 - 14*t^45 - 14*t^44 - 14*t^43
- 14*t^42 - 14*t^41 - 14*t^40 - 14*t^39 - 14*t^38 - 14*t^37 - 14*t^36 -
14*t^35 - 14*t^34 - 14*t^33 - 14*t^32 - 14*t^31 - 14*t^30 - 14*t^29 -
14*t^28 - 14*t^27 - 14*t^26 - 14*t^25 - 14*t^24 - 14*t^23 - 14*t^22 -
14*t^21 - 14*t^20 - 14*t^19 - 14*t^18 - 14*t^17 - 14*t^16 - 14*t^15 -
14*t^14 - 14*t^13 - 14*t^12 - 14*t^11 - 14*t^10 - 14*t^9 - 14*t^8 -
14*t^7 - 14*t^6 - 14*t^5 - 14*t^4 - 14*t^3 - 14*t^2 - 14*t + 1).
a(n) = -105*a(n-49) + 14*Sum_{k=1..48} a(n-k). - Wesley Ivan Hurt, May 04 2024
MATHEMATICA
coxG[{49, 105, -14}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 15 2017 *)
CROSSREFS
Sequence in context: A170505 A170553 A170601 * A170697 A170735 A058667
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved