login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169452
Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^33 = I.
1174
1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148672, 3291294892032, 19747769352192, 118486616113152, 710919696678912, 4265518180073472
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003949, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, -15).
FORMULA
G.f.: (t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^33 - 5*t^32 - 5*t^31 - 5*t^30 - 5*t^29 - 5*t^28 - 5*t^27 - 5*t^26 - 5*t^25 - 5*t^24 - 5*t^23 - 5*t^22 - 5*t^21 - 5*t^20 - 5*t^19 - 5*t^18 - 5*t^17 - 5*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1).
G.f.: (1+x)*(1-x^33)/(1 - 6*x + 20*x^33 - 15*x^34). - G. C. Greubel, May 01 2019
a(n) = -15*a(n-33) + 5*Sum_{k=1..32} a(n-k). - Wesley Ivan Hurt, May 06 2021
MAPLE
gf:= (t+1) *(t^2+t+1) *(t^10+t^9+t^8+t^7+t^6+t^5+t^4+t^3+t^2+t+1) *(t^20-t^19+t^17-t^16 +t^14-t^13+t^11-t^10+t^9-t^7+t^6-t^4+t^3- t+1) / (15*t^33-5*t^32-5*t^31-5*t^30-5*t^29 -5*t^28-5*t^27 -5*t^26-5*t^25 -5*t^24 -5*t^23-5*t^22-5*t^21-5*t^20 -5*t^19-5*t^18-5*t^17 -5*t^16 -5*t^15 -5*t^14-5*t^13-5*t^12-5*t^11-5*t^10-5*t^9-5*t^8-5*t^7 -5*t^6 -5*t^5-5*t^4 -5*t^3-5*t^2-5*t+1):
S:= series(gf, t, 101):
seq(coeff(S, t, j), j=0..100); # Robert Israel, Aug 26 2014
MATHEMATICA
coxG[{pwr_, c1_, c2_, trms_:20}]:=Module[{num=Total[2t^Range[pwr-1]]+t^pwr+ 1, den =Total[c2*t^Range[pwr-1]]+c1*t^pwr+1}, CoefficientList[ Series[ num/den, {t, 0, trms}], t]]; coxG[{33, 15, -5, 30}]
(* "pwr" is the largest exponent in the g.f.;
"c1" is the first coefficient in the denominator of the g.f.;
"c2" is the second coefficient in the denominator of the g.f.;
"trms" is the number of terms desired (with a default number of 20) *)
(* Harvey P. Dale, Aug 16 2014 *)
CoefficientList[Series[(1+x)*(1-x^33)/(1-6*x+20*x^33-15*x^34), {x, 0, 25}], x] (* G. C. Greubel, May 01 2019 *)
PROG
(PARI) my(x='x+O('x^25)); Vec((1+x)*(1-x^33)/(1-6*x+20*x^33-15*x^34)) \\ G. C. Greubel, May 01 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 25); Coefficients(R!( (1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4) )); // G. C. Greubel, May 01 2019
(Sage) ((1+x)*(1-x^33)/(1-6*x+20*x^33-15*x^34)).series(x, 25).coefficients(x, sparse=False) # G. C. Greubel, May 01 2019
CROSSREFS
Sequence in context: A169308 A169356 A169404 * A169500 A169548 A170016
KEYWORD
nonn,easy
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved