login
A169451
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^33 = I.
0
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843750, 7324218750, 36621093750, 183105468750, 915527343750, 4577636718750, 22888183593750, 114440917968750, 572204589843750
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003948, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, -10).
FORMULA
G.f. (t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(10*t^33 - 4*t^32 - 4*t^31 - 4*t^30 - 4*t^29 - 4*t^28 - 4*t^27 -
4*t^26 - 4*t^25 - 4*t^24 - 4*t^23 - 4*t^22 - 4*t^21 - 4*t^20 - 4*t^19 -
4*t^18 - 4*t^17 - 4*t^16 - 4*t^15 - 4*t^14 - 4*t^13 - 4*t^12 - 4*t^11 -
4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 -
4*t + 1)
MATHEMATICA
With[{num=Total[2t^Range[32]]+t^33+1, den=Total[-4 t^Range[32]]+ 10t^33+1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Apr 27 2012 *)
coxG[{33, 10, -4, 30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 19 2022 *)
CROSSREFS
Sequence in context: A169307 A169355 A169403 * A169499 A169547 A170015
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved