login
A169403
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.
1
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843750, 7324218750, 36621093750, 183105468750, 915527343750, 4577636718750, 22888183593750, 114440917968750, 572204589843750
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003948, although the two sequences are eventually different.
First disagreement is at index 32, the difference is 15. - Klaus Brockhaus, Jun 26 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, -10).
FORMULA
G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^32 - 4*t^31 - 4*t^30 - 4*t^29 - 4*t^28 - 4*t^27 - 4*t^26 - 4*t^25 - 4*t^24 - 4*t^23 - 4*t^22 - 4*t^21 - 4*t^20 - 4*t^19 - 4*t^18 - 4*t^17 - 4*t^16 - 4*t^15 - 4*t^14 - 4*t^13 - 4*t^12 - 4*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1).
G.f.: (1+2*sum(k=1..31,x^k)+x^32)/(1-4*sum(k=1..31,x^k)+10*x^32).
PROG
(PARI) x='x+O('x^66); /* that many terms */
Vec((1+2*sum(k=1, 31, x^k)+x^32)/(1-4*sum(k=1, 31, x^k)+10*x^32)) /* show terms */
/* Joerg Arndt, Jun 26 2011 */
CROSSREFS
Cf. A003948 (G.f.: (1+x)/(1-5*x) ).
Sequence in context: A169259 A169307 A169355 * A169451 A169499 A169547
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved