OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003946, although the two sequences are eventually different.
First disagreement is at index 32, the difference is 6. - Klaus Brockhaus, Jun 26 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -3).
FORMULA
G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^32 - 2*t^31 - 2*t^30 - 2*t^29 - 2*t^28 - 2*t^27 - 2*t^26 - 2*t^25 - 2*t^24 - 2*t^23 - 2*t^22 - 2*t^21 - 2*t^20 - 2*t^19 - 2*t^18 - 2*t^17 - 2*t^16 - 2*t^15 - 2*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).
G.f.: (1+2*sum(k=1..31,x^k)+x^32)/(1-2*sum(k=1..31,x^k)+3*x^32).
MATHEMATICA
With[{num=Total[2t^Range[31]]+t^32+1, den=Total[-2 t^Range[31]]+3t^32+1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Nov 30 2011 *)
PROG
(PARI) x='x+O('x^66); /* that many terms */
Vec((1+2*sum(k=1, 31, x^k)+x^32)/(1-2*sum(k=1, 31, x^k)+3*x^32)) /* show terms */
/* Joerg Arndt, Jun 26 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved