login
A169257
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^29 = I.
0
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186884, 516560652, 1549681956, 4649045868, 13947137604, 41841412812, 125524238436, 376572715308, 1129718145924
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003946, although the two sequences are eventually different.
First disagreement at index 29: a(29) = 91507169819838, A003946(29) = 91507169819844. - Klaus Brockhaus, Jun 03 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -3).
FORMULA
G.f.: (t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^29 - 2*t^28 - 2*t^27 - 2*t^26 - 2*t^25 - 2*t^24 - 2*t^23 - 2*t^22 - 2*t^21 - 2*t^20 - 2*t^19 - 2*t^18 - 2*t^17 - 2*t^16 - 2*t^15 - 2*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[28]]+t^29+1, den=Total[-2 t^Range[28]]+3t^29+1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Jan 26 2012 *)
CROSSREFS
Cf. A003946 (G.f.: (1+x)/(1-3*x)).
Sequence in context: A169113 A169161 A169209 * A169305 A169353 A169401
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved