login
A169255
Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^28 = I.
0
1, 50, 2450, 120050, 5882450, 288240050, 14123762450, 692064360050, 33911153642450, 1661646528480050, 81420679895522450, 3989613314880600050, 195491052429149402450, 9579061569028320720050, 469374016882387715282450
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170769, although the two sequences are eventually different.
First disagreement at index 28: a(28) = 215905728369821828201764654885386404377612441225, A170769(28) = 215905728369821828201764654885386404377612442450. - Klaus Brockhaus, May 24 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, -1176).
FORMULA
G.f.: (t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^28 - 48*t^27 - 48*t^26 - 48*t^25 - 48*t^24 - 48*t^23 - 48*t^22 - 48*t^21 - 48*t^20 - 48*t^19 - 48*t^18 - 48*t^17 - 48*t^16 - 48*t^15 - 48*t^14 - 48*t^13 - 48*t^12 - 48*t^11 - 48*t^10 - 48*t^9 - 48*t^8 - 48*t^7 - 48*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[27]]+t^28+1, den=Total[-48 t^Range[27]]+ 1176t^28+1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Jun 23 2011 *)
CROSSREFS
Cf. A170769 (G.f.: (1+x)/(1-49*x)).
Sequence in context: A169111 A169159 A169207 * A169303 A169351 A169399
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved