login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170740
Expansion of g.f.: (1+x)/(1-20*x).
50
1, 21, 420, 8400, 168000, 3360000, 67200000, 1344000000, 26880000000, 537600000000, 10752000000000, 215040000000000, 4300800000000000, 86016000000000000, 1720320000000000000, 34406400000000000000, 688128000000000000000, 13762560000000000000000, 275251200000000000000000
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*21^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 21*20^(n-1). - Vincenzo Librandi, Dec 05 2009
E.g.f: (21*exp(20*x) - 1)/20. - G. C. Greubel, Sep 24 2019
MAPLE
k:=21; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Sep 24 2019
MATHEMATICA
Join[{1}, 21*20^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 13 2011 *)
PROG
(Python) for i in range(31):print(i, 21*20**(i-1) if i>0 else 1) # Kenny Lau, Aug 01 2017
(PARI) vector(26, n, k=21; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Sep 24 2019
(Magma) k:=21; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Sep 24 2019
(Sage) k=21; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 24 2019
(GAP) k:=21;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 24 2019
CROSSREFS
Sequence in context: A170606 A170654 A170702 * A064108 A353144 A067895
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved