login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A170740 Expansion of g.f.: (1+x)/(1-20*x). 50
1, 21, 420, 8400, 168000, 3360000, 67200000, 1344000000, 26880000000, 537600000000, 10752000000000, 215040000000000, 4300800000000000, 86016000000000000, 1720320000000000000, 34406400000000000000, 688128000000000000000, 13762560000000000000000, 275251200000000000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Kenny Lau, Table of n, a(n) for n = 0..768

Index entries for linear recurrences with constant coefficients, signature (20).

FORMULA

a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*21^k. - Philippe Deléham, Dec 04 2009

a(0) = 1; for n>0, a(n) = 21*20^(n-1). - Vincenzo Librandi, Dec 05 2009

E.g.f: (21*exp(20*x) - 1)/20. - G. C. Greubel, Sep 24 2019

MAPLE

k:=21; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Sep 24 2019

MATHEMATICA

Join[{1}, 21*20^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 13 2011 *)

PROG

(Python) for i in range(31):print(i, 21*20**(i-1) if i>0 else 1) # Kenny Lau, Aug 01 2017

(PARI) vector(26, n, k=21; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Sep 24 2019

(MAGMA) k:=21; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Sep 24 2019

(Sage) k=21; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 24 2019

(GAP) k:=21;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 24 2019

CROSSREFS

Cf. A003945, A097805.

Sequence in context: A170606 A170654 A170702 * A064108 A067895 A215856

Adjacent sequences:  A170737 A170738 A170739 * A170741 A170742 A170743

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 05:56 EDT 2019. Contains 328335 sequences. (Running on oeis4.)