login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064108
a(n) = (20^n - 1)/19.
39
0, 1, 21, 421, 8421, 168421, 3368421, 67368421, 1347368421, 26947368421, 538947368421, 10778947368421, 215578947368421, 4311578947368421, 86231578947368421, 1724631578947368421, 34492631578947368421, 689852631578947368421, 13797052631578947368421, 275941052631578947368421
OFFSET
0,3
COMMENTS
Partial sums of powers of 20 (A009964), q-integers for q=20: diagonal k=1 in triangle A022184.
Partial sums are in A014904. Also, the sequence is related to A014937 by A014937(n) = n*a(n)-Sum_{i=0..n-1} a(i), for n>0. - Bruno Berselli, Nov 06 2012
For n >= 1, a(n) is the total number of holes in a certain box fractal (start with 20 boxes, 1 hole) after n iterations. See illustration in links. - Kival Ngaokrajang, Jan 28 2015
FORMULA
a(n) = 20*a(n-1) + 1, with a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(0)=0, a(1)=1, a(n) = 21*a(n-1) - 20*a(n-2). - Harvey P. Dale, Oct 04 2012
a(n) = floor(20^n/19). - M. F. Hasler, Nov 04 2012
G.f.: x/((1 - x)*(1 - 20*x)). - Bruno Berselli, Nov 06 2012
E.g.f.: exp(x)*(exp(19*x) - 1)/19. - Stefano Spezia, Mar 23 2023
EXAMPLE
From N. J. A. Sloane, Nov 04 2014: Can also be obtained by writing powers of 2 in a staggered array and adding them (cf. A249604). For example, a(9) is:
..........1
.........2
........4
.......8
.....16
....32
...64
.128
256
-----------
26947368421
MAPLE
a:=n->sum(20^(n-j), j=0..n): seq(a(n), n=0..15); # Zerinvary Lajos, Feb 11 2007
MATHEMATICA
(20^Range[20]-1)/19 (* or *) NestList[20#+1&, 1, 20] (* Harvey P. Dale, Oct 04 2012 *)
PROG
(Sage) [gaussian_binomial(n, 1, 20) for n in range(1, 17)] # Zerinvary Lajos, May 29 2009
(PARI) for (n=0, 100, write("b064108.txt", n, " ", (20^n - 1)/19)) \\ Harry J. Smith, Sep 07 2009
(PARI) A064108(n)=20^n\19 \\ M. F. Hasler, Nov 04 2012
(Maxima) A064108(n):=(20^n-1)/19$ makelist(A064108(n), n, 1, 30); /* Martin Ettl, Nov 05 2012 */
KEYWORD
nonn,easy
AUTHOR
Jason Earls, Sep 17 2001
EXTENSIONS
Edited and extended to offset 0 by M. F. Hasler, Nov 04 2012
STATUS
approved