login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094028
Expansion of 1/((1-x)*(1-100*x)).
57
1, 101, 10101, 1010101, 101010101, 10101010101, 1010101010101, 101010101010101, 10101010101010101, 1010101010101010101, 101010101010101010101, 10101010101010101010101, 1010101010101010101010101, 101010101010101010101010101, 10101010101010101010101010101
OFFSET
0,2
COMMENTS
Regarded as binary numbers and converted to decimal, these become 1,5,21,85,... the partial sums of 4^n (see A002450).
Partial sums of 100^n.
Odd terms of A056830. - Alexandre Wajnberg, May 31 2005
101 is the only term that is prime, since (100^k-1)/99 = (10^k+1)/11 * (10^k-1)/9. When k is odd and not 1, (10^k+1)/11 is an integer > 1 and thus (100^k-1)/99 is nonprime. When k is even and greater than 2, (100^k-1)/99 has the prime factor 101 and is nonprime. - Felix Fröhlich, Oct 17 2015
Previous comment is the answer to the problem A1 proposed during the 50th Putnam Competition in 1989 (link). - Bernard Schott, Mar 24 2023
REFERENCES
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
G.f.: 1/((1-x)*(1-100*x)).
a(n) = 1+100*(100^n-1)/99. - N. J. A. Sloane, Apr 20 2008
a(n) = 100^(n+1)/99 - 1/99.
a(n) = A094027(2n+1).
a(n) = 100*a(n-1) + 1, a(0) = 1. - Philippe Deléham, Feb 22 2014
a(n) = 101*a(n-1)-100*a(n-2) for n>1. - Wesley Ivan Hurt, Oct 17 2015
a(n) = (100^(n+1) - 1)/99. - Bernard Schott, Apr 15 2021
EXAMPLE
From Omar E. Pol, Dec 13 2008: (Start)
=======================
n ....... a(n)
0 ........ 1
1 ....... 101
2 ...... 10101
3 ..... 1010101
4 .... 101010101
5 ... 10101010101
======================
(End)
MAPLE
A094028:=n->1+100*(100^n-1)/99: seq(A094028(n), n=0..15); # Wesley Ivan Hurt, Oct 17 2015
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-100x)), {x, 0, 20}], x] (* or *) Table[ FromDigits[ PadRight[{}, 2n-1, {1, 0}]], {n, 20}] (* or *) LinearRecurrence[ {101, -100}, {1, 101}, 20] (* or *) NestList[100#+1&, 1, 20] (* Harvey P. Dale, Apr 27 2015 *)
PROG
(Maxima) A094028(n):=1+100*(100^n-1)/99$
makelist(A094028(n), n, 0, 30); /* Martin Ettl, Nov 06 2012 */
(Magma) [1+100*(100^n-1)/99 : n in [0..15]]; // Wesley Ivan Hurt, Oct 17 2015
(PARI) a(n) = 1+100*(100^n-1)/99 \\ Felix Fröhlich, Oct 17 2015
(PARI) Vec(1/((1-x)*(1-100*x)) + O(x^100)) \\ Altug Alkan, Oct 17 2015
CROSSREFS
Bisection of A147759. [Omar E. Pol, Nov 13 2008]
Cf. similar sequences of the form (k^n-1)/(k-1) listed in A269025.
Sequence in context: A164367 A263244 A368417 * A144564 A261965 A255892
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 22 2004
STATUS
approved