login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269025 a(n) = Sum_{k = 0..n} 60^k. 5
1, 61, 3661, 219661, 13179661, 790779661, 47446779661, 2846806779661, 170808406779661, 10248504406779661, 614910264406779661, 36894615864406779661, 2213676951864406779661, 132820617111864406779661, 7969237026711864406779661, 478154221602711864406779661 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Partial sums of powers of 60 (A159991).

Converges in a 10-adic sense to ...762711864406779661.

More generally, the ordinary generating function for the Sum_{k = 0..n} m^k is 1/((1 - m*x)*(1 - x)). Also, Sum_{k = 0..n} m^k = (m^(n + 1) - 1)/(m - 1).

LINKS

Table of n, a(n) for n=0..15.

Index entries related to partial sums

Index entries for linear recurrences with constant coefficients, signature (61,-60)

FORMULA

G.f.: 1/((1 - 60*x)*(1 - x)).

a(n) = (60^(n + 1) - 1)/59 = 60^n + floor(60^n/59).

a(n+1) = 60*a(n) + 1, a(0)=1.

a(n) = Sum_{k = 0..n} A159991(k).

Sum_(n>=0} 1/a(n) = 1.016671221665660580331...

MATHEMATICA

Table[Sum[60^k, {k, 0, n}], {n, 0, 15}]

Table[(60^(n + 1) - 1)/59, {n, 0, 15}]

LinearRecurrence[{61, -60}, {1, 61}, 15]

PROG

(PARI) a(n)=60^n + 60^n\59 \\ Charles R Greathouse IV, Jul 26 2016

CROSSREFS

Cf. A159991.

Cf. similar sequences of the form (k^n-1)/(k-1): A000225 (k=2), A003462 (k=3), A002450 (k=4), A003463 (k=5), A003464 (k=6), A023000 (k=7), A023001 (k=8), A002452 (k=9), A002275 (k=10), A016123 (k=11), A016125 (k=12), A091030 (k=13), A135519 (k=14), A135518 (k=15), A131865 (k=16), A091045 (k=17), A218721 (k=18), A218722 (k=19), A064108 (k=20), A218724-A218734 (k=21..31), A132469, A218737-A218753 (k from 34 to 50), this sequence (k=60), A133853 (k=64), A094028 (k=100), A218723 (k=256), A261544 (k=1000).

Sequence in context: A191092 A234028 A135647 * A207231 A207224 A207011

Adjacent sequences:  A269022 A269023 A269024 * A269026 A269027 A269028

KEYWORD

nonn,easy

AUTHOR

Ilya Gutkovskiy, Feb 18 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 19:36 EDT 2018. Contains 316293 sequences. (Running on oeis4.)