OFFSET
0,3
COMMENTS
Partial sums of powers of 31 (A009975).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..600
Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See pp. 2, 17.
Index entries for linear recurrences with constant coefficients, signature (32,-31).
FORMULA
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 31*x)).
a(n) = 32*a(n-1) - 31*a(n-2) for n > 1.
a(n) = floor(31^n/30). (End)
E.g.f.: exp(16*x)*sinh(15*x)/15. - Stefano Spezia, Mar 11 2023
MATHEMATICA
LinearRecurrence[{32, -31}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
PROG
(PARI) a(n)=31^n\30
(Magma) [n le 2 select n-1 else 32*Self(n-1)-31*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
(Maxima) A218734(n):=(31^n-1)/30$
makelist(A218734(n), n, 0, 30); /* Martin Ettl, Nov 07 2012 */
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
M. F. Hasler, Nov 04 2012
STATUS
approved