The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135519 Generalized repunits in base 14. 38
 1, 15, 211, 2955, 41371, 579195, 8108731, 113522235, 1589311291, 22250358075, 311505013051, 4361070182715, 61054982558011, 854769755812155, 11966776581370171, 167534872139182395, 2345488209948553531 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Primes are given in A006032. Let A be the Hessenberg matrix of the order n, defined by: A[1,j]=1, A[i,i]:=14, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010 LINKS Harvey P. Dale, Table of n, a(n) for n = 1..873 Index entries for linear recurrences with constant coefficients, signature (15,-14). FORMULA a(n) = (14^n - 1)/13. a(n) = 14*a(n-1) + 1 for n>1, a(1)=1. - Vincenzo Librandi, Aug 03 2010 a(n) = Sum_{i=0..n-1} 13^i*binomial(n,n-1-i). - Bruno Berselli, Nov 12 2015 From G. C. Greubel, Oct 17 2016: (Start) G.f.: x/((1-x)*(1-14*x)). E.g.f.: (1/13)*(exp(14*x) - exp(x)). - G. C. Greubel, Oct 17 2016 EXAMPLE a(4) = 2955 because (14^4-1)/13 = 38416/13 = 2955. For n=6, a(6) = 1*6 + 13*15 + 169*20 + 2197*15 + 28561*6 + 371293*1 = 579195. - Bruno Berselli, Nov 12 2015 MATHEMATICA Table[FromDigits[PadRight[{}, n, 1], 14], {n, 20}] (* or *) LinearRecurrence[{15, -14}, {1, 15}, 20] (* Harvey P. Dale, Aug 29 2016 *) PROG (Sage) [gaussian_binomial(n, 1, 14) for n in range(1, 15)] # Zerinvary Lajos, May 28 2009 (Sage) [(14^n-1)/13 for n in (1..30)] # Bruno Berselli, Nov 12 2015 (Maxima) A135519(n):=(14^n-1)/13\$ makelist(A135519(n), n, 1, 30); /* Martin Ettl, Nov 05 2012 */ CROSSREFS Cf. A000225, A001022, A002450, A002452, A003462, A003463, A003464, A016123, A016125, A023000, A023001, A135278. Sequence in context: A240682 A113362 A252875 * A179091 A201340 A051826 Adjacent sequences:  A135516 A135517 A135518 * A135520 A135521 A135522 KEYWORD nonn,easy AUTHOR Julien Peter Benney (jpbenney(AT)gmail.com), Feb 19 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 16:00 EDT 2021. Contains 343652 sequences. (Running on oeis4.)