The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135518 Generalized repunits in base 15. 37
 1, 16, 241, 3616, 54241, 813616, 12204241, 183063616, 2745954241, 41189313616, 617839704241, 9267595563616, 139013933454241, 2085209001813616, 31278135027204241, 469172025408063616, 7037580381120954241 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Primes in this sequence are given in A006033. Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=15, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010 Partial sums are in A014898. Also, the sequence is related to A014930 by A014930(n) = n*a(n) - Sum_{i=1..n-1}( a(i) ). - Bruno Berselli, Nov 06 2012 LINKS G. C. Greubel, Table of n, a(n) for n = 1..250 Index entries for linear recurrences with constant coefficients, signature (16,-15). FORMULA a(n) = (15^n - 1)/14. a(n) = 15*a(n-1) + 1 with n>1, a(1)=1. - Vincenzo Librandi, Aug 03 2010 G.f.: x/((1-x)*(1-15*x)). - Bruno Berselli, Nov 07 2012 a(1)=1, a(2)=16; for n>2, a(n) = 16*a(n-1) - 15*a(n-2). - Harvey P. Dale, Jul 08 2013 a(n) = Sum_{i=0...n-1} 14^i*binomial(n,n-1-i). - Bruno Berselli, Nov 12 2015 E.g.f.: (1/14)*(exp(15*x) - exp(x)). - G. C. Greubel, Oct 17 2016 EXAMPLE a(4) = 15^3+15^2+15^1+1 = 3375+225+15+1 = 3616. For n=6, a(6) = 1*6 + 14*15 + 14^2*20 + 14^3*15 + 14^4*6 + 14^5*1 = 813616. - Bruno Berselli, Nov 12 2015 MATHEMATICA Table[FromDigits[PadRight[{}, n, 1], 15], {n, 20}] (* or *) LinearRecurrence[{16, -15}, {1, 16}, 20] (* Harvey P. Dale, Jul 08 2013 *) PROG (Sage) [gaussian_binomial(n, 1, 15) for n in range(1, 15)] # Zerinvary Lajos, May 28 2009 (Sage) [(15^n-1)/14 for n in (1..30)] # Bruno Berselli, Nov 12 2015 (Maxima) A135518(n):=(15^n-1)/14\$ makelist(A135518(n), n, 1, 30); /* Martin Ettl, Nov 05 2012 */ (PARI) a(n)=(15^n-1)/14 \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Cf. A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A016123, A016125. Cf. A001023, A135278. Sequence in context: A204793 A173605 A175720 * A179092 A231020 A274856 Adjacent sequences:  A135515 A135516 A135517 * A135519 A135520 A135521 KEYWORD nonn,easy AUTHOR Julien Peter Benney (jpbenney(AT)gmail.com), Feb 19 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 17:40 EDT 2020. Contains 334630 sequences. (Running on oeis4.)