login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135518
Generalized repunits in base 15.
39
1, 16, 241, 3616, 54241, 813616, 12204241, 183063616, 2745954241, 41189313616, 617839704241, 9267595563616, 139013933454241, 2085209001813616, 31278135027204241, 469172025408063616, 7037580381120954241, 105563705716814313616, 1583455585752214704241
OFFSET
1,2
COMMENTS
Primes in this sequence are given in A006033.
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=15, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010
Partial sums are in A014898. Also, the sequence is related to A014930 by A014930(n) = n*a(n) - Sum_{i=1..n-1}( a(i) ). - Bruno Berselli, Nov 06 2012
FORMULA
a(n) = (15^n - 1)/14.
a(n) = 15*a(n-1) + 1 with n>1, a(1)=1. - Vincenzo Librandi, Aug 03 2010
G.f.: x/((1-x)*(1-15*x)). - Bruno Berselli, Nov 07 2012
a(1)=1, a(2)=16; for n>2, a(n) = 16*a(n-1) - 15*a(n-2). - Harvey P. Dale, Jul 08 2013
a(n) = Sum_{i=0...n-1} 14^i*binomial(n,n-1-i). - Bruno Berselli, Nov 12 2015
E.g.f.: (1/14)*(exp(15*x) - exp(x)). - G. C. Greubel, Oct 17 2016
EXAMPLE
For n=4, a(4) = 15^3+15^2+15^1+1 = 3375+225+15+1 = 3616.
For n=6, a(6) = 1*6 + 14*15 + 14^2*20 + 14^3*15 + 14^4*6 + 14^5*1 = 813616. - Bruno Berselli, Nov 12 2015
MATHEMATICA
Table[FromDigits[PadRight[{}, n, 1], 15], {n, 20}] (* or *) LinearRecurrence[{16, -15}, {1, 16}, 20] (* Harvey P. Dale, Jul 08 2013 *)
PROG
(Sage) [gaussian_binomial(n, 1, 15) for n in range(1, 15)] # Zerinvary Lajos, May 28 2009
(Sage) [(15^n-1)/14 for n in (1..30)] # Bruno Berselli, Nov 12 2015
(Maxima) A135518(n):=(15^n-1)/14$ makelist(A135518(n), n, 1, 30); /* Martin Ettl, Nov 05 2012 */
(PARI) a(n)=(15^n-1)/14 \\ Charles R Greathouse IV, Sep 24 2015
(Python)
def a(n): return int('1'*n, 15)
print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Jan 16 2021
KEYWORD
nonn,easy
AUTHOR
Julien Peter Benney (jpbenney(AT)gmail.com), Feb 19 2008
STATUS
approved