The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135517 a(n) = 2^(A091090(n)-1). 4
 1, 1, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 1, 2, 1, 4, 1, 2, 1, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Also, a(n) = denominator(Euler(n, x) - Euler(n, 1)). - Observation from  Peter Luschny, Aug 08 2017, proof from Vladimir Shevelev, Aug 13 2017 Also, a(n) = denominator(Euler(n,x) + Euler(n,0)). - Vladimir Shevelev, Aug 09 2017 LINKS Robert Israel, Table of n, a(n) for n = 0..10000 Vladimir Shevelev, Is A290646 = A135517?, Posting to Sequence Fans Mailing List, Aug 13 2017 Vladimir Shevelev, On a Luschny question, arXiv:1708.08096 [math.NT], 2017. FORMULA For n >= 1, a(n) = 2^max_{odd k=1..n} (A007814(k+1) - t(n,k) - delta(n,k)), where delta(n,k) is the Kronecker symbol: delta(i,j) is 1 if i=j and 0 otherwise, and t(n,k) is the number of carries which appear in the addition of k and n-k in base 2. This allows us to answer in the affirmative the author's question (for a proof see Shevelev's link and its continuations). - Vladimir Shevelev, Aug 15 2017 MAPLE GS(2, 5, 200); # see A135416. a := n -> `if`(n=1 or n mod 2 = 0, 1, 2*a(iquo(n, 2))): seq(a(n), n=0..103); # Peter Luschny, Aug 09 2017 MATHEMATICA b[n_] := b[n] = Which[n==0, 1, n==1, 1, EvenQ[n], 1, True, b[(n-1)/2] + 1]; a[n_] := 2^(b[n+1]-1); Array[a, 103, 0] (* Jean-François Alcover, Aug 12 2017 *) PROG (PARI) a(n)=my(m=valuation(n+1, 2)); 2^if(n>>m, m, m-1) \\ Charles R Greathouse IV, Aug 15 2017 CROSSREFS This is Guy Steele's sequence GS(2, 5) (see A135416). Cf. A091090. Sequence in context: A071222 A067005 A230849 * A327395 A327404 A280726 Adjacent sequences:  A135514 A135515 A135516 * A135518 A135519 A135520 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, based on a message from Guy Steele and Don Knuth, Mar 01 2008 EXTENSIONS Entry revised by N. J. A. Sloane, Aug 31 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 21:32 EDT 2020. Contains 333117 sequences. (Running on oeis4.)