OFFSET
1,3
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
FORMULA
G.f. A(x) satisfies: A(x) = x/(1 - x) + 2*x*A(x^2). - Ilya Gutkovskiy, Dec 18 2019
EXAMPLE
From Omar E. Pol, Mar 11 2011: (Start)
Can be written as a triangle with 2^k entries on each row:
1,
1,3,
1,3,1,7,
1,3,1,7,1,3,1,15,
1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,31,
1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,31,1,3,1,7,1,3,1,15,1,3, 1,7,1,3,1,63,
Last term of rows are 2^(k+1) - 1. It appears that the row sums give A001787.
(End)
MAPLE
GS(2, 6, 200); [see A135416].
# Input n is the number of rows.
A135521_list := proc(n) local i, k, NimSum;
NimSum := proc(a, b) option remember; local i;
zip((x, y)->`if`(x<>y, 1, 0), convert(a, base, 2), convert(b, base, 2), 0);
add(`if`(%[i]=1, 2^(i-1), 0), i=1..nops(%)) end:
seq(seq(NimSum(i, i+1), i=0..2^k-1), k=0..n) end:
A135521_list(5); # Peter Luschny, May 31 2011
MATHEMATICA
Flatten[Table[BitXor[i, i + 1], {k, 0, 10}, {i, 0, -1 + 2^k}]] (* Peter Luschny, May 31 2011 *)
PROG
(PARI)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, based on a message from Guy Steele and Don Knuth, Mar 01 2008
STATUS
approved