login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135521
a(n) = 2^(A091090(n)) - 1.
2
1, 1, 3, 1, 3, 1, 7, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 63, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 63, 1, 3, 1, 7, 1
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = x/(1 - x) + 2*x*A(x^2). - Ilya Gutkovskiy, Dec 18 2019
EXAMPLE
From Omar E. Pol, Mar 11 2011: (Start)
Can be written as a triangle with 2^k entries on each row:
1,
1,3,
1,3,1,7,
1,3,1,7,1,3,1,15,
1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,31,
1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,31,1,3,1,7,1,3,1,15,1,3, 1,7,1,3,1,63,
Last term of rows are 2^(k+1) - 1. It appears that the row sums give A001787.
(End)
MAPLE
GS(2, 6, 200); [see A135416].
# Input n is the number of rows.
A135521_list := proc(n) local i, k, NimSum;
NimSum := proc(a, b) option remember; local i;
zip((x, y)->`if`(x<>y, 1, 0), convert(a, base, 2), convert(b, base, 2), 0);
add(`if`(%[i]=1, 2^(i-1), 0), i=1..nops(%)) end:
seq(seq(NimSum(i, i+1), i=0..2^k-1), k=0..n) end:
A135521_list(5); # Peter Luschny, May 31 2011
MATHEMATICA
Flatten[Table[BitXor[i, i + 1], {k, 0, 10}, {i, 0, -1 + 2^k}]] (* Peter Luschny, May 31 2011 *)
PROG
(PARI)
A091090(n) = { my(m=valuation(n+1, 2)); if(n>>m, m+1, max(m, 1)); }; \\ From A091090
A135521(n) = ((2^A091090(n))-1); \\ Antti Karttunen, Sep 27 2018
CROSSREFS
This is Guy Steele's sequence GS(2, 6) (see A135416).
Cf. A000225, A001787. - Omar E. Pol, Mar 11 2011
Sequence in context: A361519 A236757 A095250 * A344763 A176032 A218403
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, based on a message from Guy Steele and Don Knuth, Mar 01 2008
STATUS
approved