|
|
A006032
|
|
Numbers n such that (14^n - 1)/13 is prime.
(Formerly M2670)
|
|
12
|
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Table of n, a(n) for n=1..10.
Paul Bourdelais, A Generalized Repunit Conjecture
H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
H. Lifchitz, Mersenne and Fermat primes field
|
|
MATHEMATICA
|
lst={}; Do[If[PrimeQ[(14^n-1)/13], Print[n]; AppendTo[lst, n]], {n, 10^5}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 21 2008 *)
|
|
PROG
|
(PARI) is(n)=isprime((14^n - 1)/13) \\ Charles R Greathouse IV, Apr 29 2015
|
|
CROSSREFS
|
Sequence in context: A056725 A091738 A136054 * A240072 A066148 A093932
Adjacent sequences: A006029 A006030 A006031 * A006033 A006034 A006035
|
|
KEYWORD
|
hard,nonn,more
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
EXTENSIONS
|
One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
a(8) and a(9) correspond to probable primes discovered by Paul Bourdelais, Mar 01 2010
a(10) corresponds to a probable prime discovered by Paul Bourdelais, Dec 08 2014
|
|
STATUS
|
approved
|
|
|
|