login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066148 Primes with an even number of 0's in binary expansion. 5
3, 7, 19, 31, 43, 53, 67, 73, 79, 97, 103, 107, 109, 127, 139, 149, 163, 197, 271, 283, 307, 313, 331, 367, 379, 397, 409, 419, 421, 431, 433, 439, 443, 457, 463, 487, 491, 499, 523, 547, 571, 593, 599, 619, 643, 673, 683, 691, 739, 751, 773, 797, 811, 821 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

MATHEMATICA

Select[Prime[Range[200]], EvenQ[DigitCount[#, 2, 0]]&] (* Harvey P. Dale, Mar 04 2017 *)

PROG

(PARI): a066148(m) = local(p, v, z); forprime(p=2, m, v=binary(p); z=0; for(j=1, matsize(v)[2], if(v[j]==0, z++)); if(z%2==0, print1(p, ", "))) a066148(850)

(PARI) f(p)={v=binary(p); s=0; for(k=1, #v, if(v[k]==0, s++)); return(1-s%2)}; forprime(p=3, 821, if(f(p), print1(p, ", "))) \\ Washington Bomfim, Jan 14 2011

(PARI) forprime(p=2, 10^3, if( #select(x->x==0, digits(p, 2))%2==0, print1(p, ", "))); \\ Joerg Arndt, Jun 16 2018

CROSSREFS

Cf. A066149, A027699, A027697.

Cf. A059010

Sequence in context: A136054 A006032 A240072 * A093932 A141173 A145472

Adjacent sequences:  A066145 A066146 A066147 * A066149 A066150 A066151

KEYWORD

nonn,easy,base

AUTHOR

R. K. Guy, Dec 13 2001

EXTENSIONS

More terms from Vladeta Jovovic and Klaus Brockhaus, Dec 13 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 17:01 EST 2021. Contains 349596 sequences. (Running on oeis4.)