login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133853
a(n) = (64^n - 1)/63.
36
0, 1, 65, 4161, 266305, 17043521, 1090785345, 69810262081, 4467856773185, 285942833483841, 18300341342965825, 1171221845949812801, 74958198140788019265, 4797324681010433232961, 307028779584667726909505, 19649841893418734522208321, 1257589881178799009421332545
OFFSET
0,3
COMMENTS
Partial sums of powers of 64 (A089357), a.k.a. q-numbers for q=64.
FORMULA
From Wolfdieter Lang, Apr 08 2022: (Start)
a(n) = Sum_{j=0..n-1} 2^(6*j). See the comment.
G.f.: x/((1 - 64*x)*(1 - x)).
E.g.f.: exp(x)*(exp(63*x) - 1)/63. (End)
MATHEMATICA
LinearRecurrence[{65, -64}, {0, 1}, 20] (* Harvey P. Dale, Aug 20 2017 *)
PROG
(Magma) [(64^n-1)/63: n in [0..20]]; // Vincenzo Librandi, Aug 10 2011
(PARI) A133853(n)=64^n\63
(Maxima) makelist((64^n-1)/63, n, 0, 20); /* Martin Ettl, Nov 12 2012 */
CROSSREFS
Cf. A000364.
Cf. similar sequences of the form (k^n-1)/(k-1) listed in A269025.
Sequence in context: A069225 A211960 A293695 * A188693 A206876 A188506
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jan 07 2008
EXTENSIONS
a(6)-a(15) from Vincenzo Librandi, Aug 10 2011
STATUS
approved