

A133851


Sloping binary representation of powers of 4 (A000302), slope = 1 .


0



1, 0, 0, 4, 0, 0, 16, 0, 0, 64, 0, 0, 256, 0, 0, 1024, 0, 0, 4096, 0, 0, 16384, 0, 0, 65536, 0, 0, 262144, 0, 0, 1048576, 0, 0, 4194304, 0, 0, 16777216, 0, 0, 67108864, 0, 0, 268435456, 0, 0, 1073741824, 0, 0, 4294967296, 0, 0, 17179869184, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


LINKS

Table of n, a(n) for n=0..53.


EXAMPLE

When powers of 4 are written in binary (see A098608), under each other as:
0000000000001 (1)
0000000000100 (4)
0000000010000 (16)
0000001000000 (64)
0000100000000 (256)
0010000000000 (1024)
1000000000000 (4096)
and one collects their bits from the column=0 to NWdirection (from the least to the most significant end), one gets 1 (1), 00 (0), 000 (0), 0100 (4), 00000 (0), 000000 (0), 0010000 (16), etc. (see 0105033 for similar transformation done on nonnegative integers)


CROSSREFS

Cf. A037095, A077957, A105033, A000302, A098608, A102370(sloping binary numbers).
Sequence in context: A092219 A262227 A069026 * A062685 A192016 A028699
Adjacent sequences: A133848 A133849 A133850 * A133852 A133853 A133854


KEYWORD

base,nonn


AUTHOR

Philippe Deléham, Jan 06 2008


STATUS

approved



