login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132469
a(n) = (2^(5*n) - 1)/31.
35
0, 1, 33, 1057, 33825, 1082401, 34636833, 1108378657, 35468117025, 1134979744801, 36319351833633, 1162219258676257, 37191016277640225, 1190112520884487201, 38083600668303590433, 1218675221385714893857, 38997607084342876603425, 1247923426698972051309601
OFFSET
0,3
COMMENTS
Partial sums of powers of 32 (A009976), a.k.a. q-numbers for q=32. - M. F. Hasler, Nov 05 2012
REFERENCES
A. K. Devaraj, "Minimum Universal Exponent Generalisation of Fermat's Theorem", in ISSN #1550-3747, Proceedings of Hawaii Intl Conference on Statistics, Mathematics & Related Fields, 2004.
FORMULA
a(n) = (32^n - 1)/31 = floor(32^n/31) = Sum_{k=0..n} 32^k. - M. F. Hasler, Nov 05 2012
G.f.: x/((1 - x)*(1 - 32*x)). - Bruno Berselli, Nov 06 2012
E.g.f.: exp(x)*(exp(31*x) - 1)/31. - Stefano Spezia, Mar 23 2023
MATHEMATICA
Table[(2^(5 n) - 1)/31, {n, 16}] (* Robert G. Wilson v *)
LinearRecurrence[{33, -32}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
PROG
(Sage) [gaussian_binomial(5*n, 1, 2)/31 for n in range(1, 17)] # Zerinvary Lajos, May 28 2009
(Magma) [n le 2 select n-1 else 33*Self(n-1) - 32*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
(PARI) A132469(n)=32^n\31 \\ M. F. Hasler, Nov 07 2012
(Maxima) A132469(n):=(32^n-1)/31$
makelist(A132469(n), n, 0, 30); /* Martin Ettl, Nov 07 2012 */
KEYWORD
nonn,easy
AUTHOR
A.K. Devaraj, Aug 22 2007
EXTENSIONS
Edited and extended by Robert G. Wilson v, Aug 22 2007
Edited and extended to offset 0 by M. F. Hasler, Nov 05 2012
STATUS
approved