OFFSET
0,2
LINKS
Kenny Lau, Table of n, a(n) for n = 0..664
Index entries for linear recurrences with constant coefficients, signature (32).
FORMULA
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*33^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 33*32^(n-1). - Vincenzo Librandi, Dec 05 2009
E.g.f.: (1/32)*(33*exp(32*x) - 1) - Stefano Spezia, Oct 09 2019
MAPLE
k:=33; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 09 2019
MATHEMATICA
With[{k = 33}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 09 2019 *)
PROG
(Python) for i in range(1001):print(i, 33*32**(i-1) if i>0 else 1) # Kenny Lau, Aug 03 2017
(PARI) vector(26, n, k=33; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 09 2019
(Magma) k:=33; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Oct 09 2019
(Sage) k=33; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 09 2019
(GAP) k:=33;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 09 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved