login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170750
Expansion of g.f.: (1+x)/(1-30*x).
50
1, 31, 930, 27900, 837000, 25110000, 753300000, 22599000000, 677970000000, 20339100000000, 610173000000000, 18305190000000000, 549155700000000000, 16474671000000000000, 494240130000000000000, 14827203900000000000000, 444816117000000000000000
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*31^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 31*30^(n-1). - Vincenzo Librandi, Dec 05 2009
E.g.f.: (31*exp(30*x) - 1)/30. - G. C. Greubel, Sep 25 2019
MAPLE
k:=31; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Sep 25 2019
MATHEMATICA
CoefficientList[Series[(1+x)/(1-30x), {x, 0, 25}], x] (* Michael De Vlieger, Aug 04 2017 *)
With[{k = 31}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Sep 25 2019 *)
LinearRecurrence[{30}, {1, 31}, 20] (* Harvey P. Dale, Sep 25 2024 *)
PROG
(Python) for i in range(31):print(i, 31*30**(i-1) if i>0 else 1) # Kenny Lau, Aug 03 2017
(PARI) vector(26, n, k=31; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Sep 25 2019
(Magma) k:=31; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Sep 25 2019
(Sage) k=31; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 25 2019
(GAP) k:=31;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 25 2019
CROSSREFS
Sequence in context: A170616 A170664 A170712 * A218733 A084330 A238993
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved