login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A170748 Expansion of g.f.: (1+x)/(1-28*x). 50
1, 29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951744, 306775222648832, 8589706234167296, 240511774556684288, 6734329687587160064, 188561231252440481792, 5279714475068333490176, 147832005301913337724928 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Kenny Lau, Table of n, a(n) for n = 0..690

Index entries for linear recurrences with constant coefficients, signature (28).

FORMULA

a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*29^k. - Philippe Deléham, Dec 04 2009

a(0) = 1; for n>0, a(n) = 29*28^(n-1). - Vincenzo Librandi, Dec 05 2009

E.g.f.: (29*exp(28*x) -1)/28. - G. C. Greubel, Sep 25 2019

MAPLE

k:=29; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Sep 25 2019

MATHEMATICA

Join[{1}, Table[29*28^(n-1), {n, 20}]] (* or *) Join[{1}, NestList[28#&, 29, 20]] (* Harvey P. Dale, Feb 05 2012 *)

PROG

(Python) for i in range(31):print(i, 29*28**(i-1) if i>0 else 1) # Kenny Lau, Aug 03 2017

(PARI) vector(26, n, k=29; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Sep 25 2019

(MAGMA) k:=29; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Sep 25 2019

(Sage) k=29; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 25 2019

(GAP) k:=29;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 25 2019

CROSSREFS

Cf. A003945, A097805.

Sequence in context: A170614 A170662 A170710 * A218731 A171334 A097782

Adjacent sequences:  A170745 A170746 A170747 * A170749 A170750 A170751

KEYWORD

nonn,easy,changed

AUTHOR

N. J. A. Sloane, Dec 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 26 17:37 EDT 2021. Contains 346294 sequences. (Running on oeis4.)