login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170745
Expansion of g.f.: (1+x)/(1-25*x).
50
1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250, 24214386940002441406250, 605359673500061035156250
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*26^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 26*25^(n-1). - Vincenzo Librandi, Dec 05 2009
E.g.f.: (26*exp(25*x) - 1)/25. - G. C. Greubel, Sep 25 2019
MAPLE
k:=26; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Sep 25 2019
MATHEMATICA
CoefficientList[Series[(1+x)/(1-25*x), {x, 0, 20}], x] (* or *) Join[ {1}, NestList[25#&, 26, 20]] (* Harvey P. Dale, Aug 08 2019 *)
PROG
(Python) for i in range(31):print(i, 26*25**(i-1) if i>0 else 1) # Kenny Lau, Aug 03 2017
(PARI) vector(26, n, k=26; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Sep 25 2019
(Magma) k:=26; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Sep 25 2019
(Sage) k=26; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 24 2019
(GAP) k:=26;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 25 2019
CROSSREFS
Sequence in context: A170611 A170659 A170707 * A218728 A209963 A158542
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved