login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A170742 Expansion of g.f.: (1+x)/(1-22*x). 50
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131968, 6504631331310903296, 143101889288839872512, 3148241564354477195264, 69261314415798498295808, 1523748917147566962507776 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Kenny Lau, Table of n, a(n) for n = 0..744

Index entries for linear recurrences with constant coefficients, signature (22).

FORMULA

a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*23^k. - Philippe Deléham, Dec 04 2009

a(0) = 1; for n>0, a(n) = 23*22^(n-1). - Vincenzo Librandi, Dec 05 2009

E.g.f.: (23*exp(22*x) - 1)/22. - G. C. Greubel, Sep 25 2019

MAPLE

k:=23; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Sep 25 2019

MATHEMATICA

With[{k=23}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Sep 25 2019 *)

PROG

(Python) for i in range(31):print(i, 23*22**(i-1) if i>0 else 1) # Kenny Lau, Aug 01 2017

(PARI) vector(26, n, k=23; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Sep 25 2019

(MAGMA) k:=23; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Sep 25 2019

(Sage) k=23; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 25 2019

(GAP) k:=23;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 25 2019

CROSSREFS

Cf. A003945, A097805.

Sequence in context: A170608 A170656 A170704 * A218725 A136285 A114926

Adjacent sequences:  A170739 A170740 A170741 * A170743 A170744 A170745

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 20:24 EDT 2019. Contains 328273 sequences. (Running on oeis4.)