Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Mar 23 2023 17:17:23
%S 0,1,33,1057,33825,1082401,34636833,1108378657,35468117025,
%T 1134979744801,36319351833633,1162219258676257,37191016277640225,
%U 1190112520884487201,38083600668303590433,1218675221385714893857,38997607084342876603425,1247923426698972051309601
%N a(n) = (2^(5*n) - 1)/31.
%C Partial sums of powers of 32 (A009976), a.k.a. q-numbers for q=32. - _M. F. Hasler_, Nov 05 2012
%D A. K. Devaraj, "Minimum Universal Exponent Generalisation of Fermat's Theorem", in ISSN #1550-3747, Proceedings of Hawaii Intl Conference on Statistics, Mathematics & Related Fields, 2004.
%H Vincenzo Librandi, <a href="/A132469/b132469.txt">Table of n, a(n) for n = 0..600</a>
%H Quynh Nguyen, Jean Pedersen, and Hien T. Vu, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Pedersen/pedersen2.html">New Integer Sequences Arising From 3-Period Folding Numbers</a>, Vol. 19 (2016), Article 16.3.1. See Table 1.
%H <a href="/index/Par#partial">Index entries related to partial sums</a>.
%H <a href="/index/Q#q-numbers">Index entries related to q-numbers</a>.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (33,-32).
%F a(n) = (32^n - 1)/31 = floor(32^n/31) = Sum_{k=0..n} 32^k. - _M. F. Hasler_, Nov 05 2012
%F G.f.: x/((1 - x)*(1 - 32*x)). - _Bruno Berselli_, Nov 06 2012
%F E.g.f.: exp(x)*(exp(31*x) - 1)/31. - _Stefano Spezia_, Mar 23 2023
%t Table[(2^(5 n) - 1)/31, {n, 16}] (* _Robert G. Wilson v_ *)
%t LinearRecurrence[{33, -32}, {0, 1}, 30] (* _Vincenzo Librandi_, Nov 07 2012 *)
%o (Sage) [gaussian_binomial(5*n,1,2)/31 for n in range(1,17)] # _Zerinvary Lajos_, May 28 2009
%o (Magma) [n le 2 select n-1 else 33*Self(n-1) - 32*Self(n-2): n in [1..20]]; // _Vincenzo Librandi_, Nov 07 2012
%o (PARI) A132469(n)=32^n\31 \\ _M. F. Hasler_, Nov 07 2012
%o (Maxima) A132469(n):=(32^n-1)/31$
%o makelist(A132469(n),n,0,30); /* _Martin Ettl_, Nov 07 2012 */
%Y Cf. similar sequences of the form (k^n-1)/(k-1): A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125, A091030, A135519, A135518, A131865, A091045, A218721, A218722, A064108, A218724-A218734, A132469, A218736-A218753, A133853, A094028, A218723.
%K nonn,easy
%O 0,3
%A _A.K. Devaraj_, Aug 22 2007
%E Edited and extended by _Robert G. Wilson v_, Aug 22 2007
%E Edited and extended to offset 0 by _M. F. Hasler_, Nov 05 2012