login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135647 G.f. = 1/(x^36*p(1/x)) where p(x)=(- 25 - 49 x^9 + x^10)*(- 1 - 2 x^9 + x^10)^3*(- 1 - x^9 + x^10)^6. 0
1, 61, 3070, 150836, 7392650, 362245994, 17750074048, 869753690956, 42617931038803, 2088278621406591, 102325652450274784, 5013956970066973919, 245683891533290673468, 12038510685131268747080, 589887023571432406862284 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Weighted solution of a zero sum game.

Let Ma={{0, 1, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 1, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 1, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 1, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 1, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 1, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 1, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 1, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 1},

{25, 0, 0, 0, 0, 0, 0, 0, 0, 49}}; a={1,2};

ML={{0, 1, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 1, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 1, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 1, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 1, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 1, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 1, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 1, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 1},

{25, 0, 0, 0, 0, 0, 0, 0, 0, 49}}.

Such that:

6*Game_value[M1]+3*Game_value[M2]+Game_Value[ML]=0

My first solution was "unweighted".

LINKS

Table of n, a(n) for n=1..15.

FORMULA

p(x)=(-25 - 49 x^9 + x^10)(-1 - 2 x^9 + x^10)^3(-1 - x^9 + x^10)^6; f(x)=1/(x^36*p(1/x)) a(n) =expansion(f(x))

MATHEMATICA

f[x_] = Product[CharacteristicPolynomial[{{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 0, a}}, x]^(6/a), {a, 1, 2}]*CharacteristicPolynomial[{{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {25, 0, 0, 0, 0, 0, 0, 0, 0, 49}}, x]; g[x_] = Expand[x^100*f[1/x]]; a = Table[ SeriesCoefficient[Series[1/g[x], {x, 0, 30}], n], {n, 0, 30}]

CROSSREFS

Sequence in context: A000508 A191092 A234028 * A269025 A207231 A207224

Adjacent sequences:  A135644 A135645 A135646 * A135648 A135649 A135650

KEYWORD

nonn,uned,obsc

AUTHOR

Roger L. Bagula, Jan 31 2008

EXTENSIONS

The connection with the zero-sum game is not clear to me. Also, how does Ma depend on a? It appears that Ma = ML, so perhaps there are errors in these matrices? - N. J. A. Sloane, May 16 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 22:50 EST 2021. Contains 349590 sequences. (Running on oeis4.)