OFFSET
1,2
COMMENTS
Weighted solution of a zero sum game.
Let Ma={{0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 1, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
{25, 0, 0, 0, 0, 0, 0, 0, 0, 49}}; a={1,2};
ML={{0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 1, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
{25, 0, 0, 0, 0, 0, 0, 0, 0, 49}}.
Such that:
6*Game_value[M1]+3*Game_value[M2]+Game_Value[ML]=0
My first solution was "unweighted".
FORMULA
p(x)=(-25 - 49 x^9 + x^10)(-1 - 2 x^9 + x^10)^3(-1 - x^9 + x^10)^6; f(x)=1/(x^36*p(1/x)) a(n) =expansion(f(x))
MATHEMATICA
f[x_] = Product[CharacteristicPolynomial[{{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 0, a}}, x]^(6/a), {a, 1, 2}]*CharacteristicPolynomial[{{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {25, 0, 0, 0, 0, 0, 0, 0, 0, 49}}, x]; g[x_] = Expand[x^100*f[1/x]]; a = Table[ SeriesCoefficient[Series[1/g[x], {x, 0, 30}], n], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn,uned,obsc
AUTHOR
Roger L. Bagula, Jan 31 2008
EXTENSIONS
The connection with the zero-sum game is not clear to me. Also, how does Ma depend on a? It appears that Ma = ML, so perhaps there are errors in these matrices? - N. J. A. Sloane, May 16 2008
STATUS
approved