login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000508
Generalized class numbers c_(n,3).
(Formerly M5324 N2315)
5
61, 2763, 38528, 249856, 1066590, 3487246, 9493504, 22634496, 48649086, 96448478, 179369856, 315621376, 530788622, 860061996, 1346126848, 2046820352, 3038120316, 4403100222, 6254596992, 8737505280, 11992903772
OFFSET
1,1
COMMENTS
Let L_a(s) = Sum_{k>=0} (-a|2k+1) /(2k+1)^s be a Dirichlet series, where (-a|2k+1) is the Jacobi symbol. Then the c_(a,n) are defined by L_a(2n+1) = (Pi/(2a))^(2n+1)*sqrt(a)*c_(a,n)/(2n)! for n=0,1,2,..., a=1,2,3,...
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 1967 6890694.
D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
MATHEMATICA
amax = 25; km0 = 10; Clear[cc]; L[a_, s_, km_] := Sum[ JacobiSymbol[ -a, 2 k + 1]/(2 k + 1)^s, {k, 0, km}]; c[1, n_, km_] := 2 (2 n)! L[1, 2 n + 1, km] (2/Pi)^(2 n + 1) // Round; c[a_ /; a > 1, n_, km_] := (2 n)! L[a, 2 n + 1, km] (2 a/Pi)^(2 n + 1)/Sqrt[a] // Round; cc[km_] := cc[km] = Table[ c[a, 3, km], {a, 1, amax} ]; cc[km0]; cc[km = 2 km0]; While[cc[km] != cc[km/2, km = 2 km]]; A000508 = cc[km] (* Jean-François Alcover, Feb 09 2016 *)
Table[rowA235605[n, 3][[4]], {n, 50}] (* see A235605 *) (* Matthew House, Oct 05 2024 *)
CROSSREFS
Column 3 of A235605.
Sequence in context: A038650 A224441 A078962 * A191092 A234028 A135647
KEYWORD
nonn,easy
EXTENSIONS
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000
Name clarified by James C. McMahon, Nov 30 2023
STATUS
approved