

A000509


Size of second largest narc in PG(2,q), where q runs through the primes and prime powers >= 7.


1



6, 6, 8, 10, 12, 13, 14, 14, 17, 21, 22, 24
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The Davydov et al. reference arXiv:10004.2817 has data sufficient for a bfile.  Jonathan Vos Post, Apr 18 2010
The terms run through indices q=A000961(i), i>=6.  R. J. Mathar, Jan 09 2017


LINKS

Table of n, a(n) for n=1..12.
Alexander A. Davydov, Giorgio Faina, Stefano Marcugini, Fernanda Pambianco, New sizes of complete arcs in PG(2,q), arXiv:1004.2817 [math.CO], April 16, 2010.
Alexander A. Davydov, Giorgio Faina, Stefano Marcugini, Fernanda Pambianco, On sizes of complete caps in projective spaced PG(n,q) and arcs in planes PG(2,q), J. Geom. 94 (1) (2009) 3158.
J. W. P. Hirschfeld, Complete arcs, Discr. Math., 174 (1997), 177184.
J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces, J. Statist. Plann. Inference 72 (1998), no. 12, 355380.
G. Keri, Types of superregular matrices and the number of narcs and complete narcs in PG(r,q), Journal of Combinatorial Designs, Vol. 14 (2006), pp. 363390.


EXAMPLE

m'(31)=22 because there are no complete narcs in PG(2,31) for 23<=n<=31.


CROSSREFS

Cf. A000510.
Cf. A000961.
Sequence in context: A322292 A195707 A175217 * A160257 A315830 A183042
Adjacent sequences: A000506 A000507 A000508 * A000510 A000511 A000512


KEYWORD

nonn,hard,more,nice


AUTHOR

J. W. P. Hirschfeld [ jwph(AT)sussex.ac.uk ]


EXTENSIONS

Definition clarified by G. Keri (keri(AT)sztaki.hu), Jan 03 2008


STATUS

approved



