

A183042


Least number of knight's moves from (0,0) to the segment of points (0,n), (1,n1), ..., (n,0) on infinite chessboard.


2



0, 6, 6, 8, 12, 18, 22, 28, 36, 42, 52, 64, 68, 82, 98, 104, 118, 138, 146, 164, 184, 194, 216, 240, 248, 274, 302, 312, 338, 370, 382, 412, 444, 458, 492, 528, 540, 578, 618, 632, 670, 714, 730, 772, 816, 834, 880, 928, 944, 994
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..49.


FORMULA

a(n)=T(n,0)+T(n1,1)+...+T(0,n), where T is formulated at A065775.
Empirical g.f.: 2*x*(x^13x^93*x^7x^64*x^23*x3) / ((x1)^3*(x+1)*(x^2+1)*(x^2+x+1)^2).  Colin Barker, May 04 2014


EXAMPLE

For n=3, the least number of knight's moves to the points (i.e., squares) (3,0), (2,1), (1,2), (0,3) are 3,1,1,3, respectively, for a total of a(3)=8.


CROSSREFS

Cf. A065775.
Sequence in context: A000509 A160257 A315830 * A083507 A157320 A200616
Adjacent sequences: A183039 A183040 A183041 * A183043 A183044 A183045


KEYWORD

nonn


AUTHOR

Clark Kimberling, Dec 20 2010


STATUS

approved



