login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157320 Symmetrical Hahn weights on q-form factorials:m=1;q=2; q-form:t(n,m)=If[m == 0, n!, Product[Sum[(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]]; Hahn weight:b(n,k,m)=If[n == 0, 1, (n!*t[m + 1, k]*t[m + 1, n - k])/(k!*(n - k)!*t[1, n])]. 0
1, 6, 6, 8, 18, 8, 10, 36, 36, 10, 12, 60, 96, 60, 12, 14, 90, 200, 200, 90, 14, 16, 126, 360, 500, 360, 126, 16, 18, 168, 588, 1050, 1050, 588, 168, 18, 20, 216, 896, 1960, 2520, 1960, 896, 216, 20, 22, 270, 1296, 3360, 5292, 5292, 3360, 1296, 270, 22, 24, 330 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row sums are:

{1, 12, 34, 92, 240, 608, 1504, 3648, 8704, 20480, 47616,...}.

These are Rhombi sides as ratios of q-form to factorial:

r1=t(1,n)/n!;

r2=t(m+1,k]/(n-k)!;

r3=t(m+1,n-k)/(n-k)!

They get very large very fast, but all are integer.

LINKS

Table of n, a(n) for n=0..56.

FORMULA

m=1;q=2;

q-form:t(n,m)=If[m == 0, n!, Product[Sum[(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];

Hahn weight:

b(n,k,m)=If[n == 0, 1, (n!*t[m + 1, k]*t[m + 1, n - k])/(k!*(n - k)!*t[1, n])].

EXAMPLE

{1},

{6, 6},

{8, 18, 8},

{10, 36, 36, 10},

{12, 60, 96, 60, 12},

{14, 90, 200, 200, 90, 14},

{16, 126, 360, 500, 360, 126, 16},

{18, 168, 588, 1050, 1050, 588, 168, 18},

{20, 216, 896, 1960, 2520, 1960, 896, 216, 20},

{22, 270, 1296, 3360, 5292, 5292, 3360, 1296, 270, 22},

{24, 330, 1800, 5400, 10080, 12348, 10080, 5400, 1800, 330, 24}

MATHEMATICA

Clear[t, n, m, i, k, a, b];

t[n_, m_] = If[m == 0, n!, Product[Sum[(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];

b[n_, k_, m_] = If[n == 0, 1, (n!*t[m + 1, k]*t[m + 1, n - k])/(k!*(n - k)!*t[ 1, n])];

Table[Flatten[Table[Table[b[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 15}]

CROSSREFS

Sequence in context: A315830 A183042 A083507 * A200616 A019851 A155880

Adjacent sequences:  A157317 A157318 A157319 * A157321 A157322 A157323

KEYWORD

nonn,tabf,uned

AUTHOR

Roger L. Bagula, Feb 26 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 18 21:20 EST 2020. Contains 332028 sequences. (Running on oeis4.)