login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200616 Decimal expansion of the lesser of two values of x satisfying 4*x^2-1=tan(x) and 0<x<pi/2. 3
6, 6, 9, 1, 0, 2, 9, 7, 2, 0, 2, 3, 5, 7, 5, 4, 1, 6, 0, 7, 6, 6, 0, 1, 2, 5, 0, 1, 8, 8, 4, 5, 6, 9, 8, 2, 4, 5, 6, 2, 2, 7, 9, 4, 4, 3, 8, 7, 1, 8, 5, 6, 4, 3, 3, 0, 1, 1, 5, 8, 3, 0, 0, 2, 1, 7, 3, 9, 4, 9, 8, 4, 0, 8, 4, 2, 6, 3, 7, 2, 4, 5, 6, 0, 2, 7, 9, 3, 9, 0, 4, 3, 4, 2, 2, 9, 3, 7, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A200614 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

lesser:  0.839582259045302941513764008863804986308...

greater: 1.350956593976519397744696294368524715373...

MATHEMATICA

a = 4; c = 1;

f[x_] := a*x^2 - c; g[x_] := Tan[x]

Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]

RealDigits[r]   (* A200616 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]

RealDigits[r]   (* A200617 *)

CROSSREFS

Cf. A200614.

Sequence in context: A183042 A083507 A157320 * A019851 A155880 A217852

Adjacent sequences:  A200613 A200614 A200615 * A200617 A200618 A200619

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 28 23:08 EST 2020. Contains 332351 sequences. (Running on oeis4.)