The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200614 Decimal expansion of the lesser of two values of x satisfying 3*x^2 - 1 = tan(x) and 0 < x < Pi/2. 61
 8, 3, 9, 5, 8, 2, 2, 5, 9, 0, 4, 5, 3, 0, 2, 9, 4, 1, 5, 1, 3, 7, 6, 4, 0, 0, 8, 8, 6, 3, 8, 0, 4, 9, 8, 6, 3, 0, 8, 4, 1, 6, 5, 4, 1, 0, 2, 6, 9, 4, 4, 0, 9, 0, 0, 3, 3, 4, 9, 1, 4, 3, 4, 0, 6, 7, 6, 5, 8, 4, 1, 4, 6, 1, 0, 4, 1, 1, 6, 7, 4, 2, 5, 9, 5, 3, 5, 3, 0, 0, 2, 3, 6, 6, 2, 4, 6, 0, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS For many choices of a and c, there are exactly two values of x satisfying a*x^2 - c = tan(x) and 0 < x < Pi/2; for other choices, there is exactly once such value. Guide to related sequences, with graphs included in Mathematica programs: a.... c.... x 3.... 1.... A200614, A200615 4.... 1.... A200616, A200617 5.... 1.... A200620, A200621 5.... 2.... A200622, A200623 5.... 3.... A200624, A200625 5.... 4.... A200626, A200627 5... -1.... A200628 5... -2.... A200629 5... -3.... A200630 5... -4.... A200631 6.... 1.... A200633, A200634 6.... 5.... A200635, A200636 6... -1.... A200637 6... -5.... A200638 1... -5.... A200239 2... -5.... A200240 3... -5.... A200241 4... -5.... A200242 2.... 0.... A200679, A200680 3.... 0.... A200681, A200682 4.... 0.... A200683, A200684 5.... 0.... A200618 6.... 0.... A200632 7.... 0.... A200643 8.... 0.... A200644 9.... 0.... A200645 10... 0.... A200646 -1... 1.... A200685 -1... 2.... A200686 -1... 3.... A200687 -1... 4.... A200688 -1... 5.... A200689 -1... 6.... A200690 -1... 7.... A200691 -1... 8.... A200692 -1... 9.... A200693 -1... 10... A200694 -2... 1.... A200695 -2... 3.... A200696 -3... 1.... A200697 -3... 2.... A200698 -4... 1.... A200699 -5... 1.... A200700 -6... 1.... A200701 -7... 1.... A200702 -8... 1.... A200703 -9... 1.... A200704 -10.. 1.... A200705 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f. For an example related to A200614, take f(x,u,v) = u*x^2 - v = tan(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section. LINKS Table of n, a(n) for n=0..98. EXAMPLE lesser: 0.839582259045302941513764008863804986308... greater: 1.350956593976519397744696294368524715373... MATHEMATICA (* Program 1: A200614 and A200615 *) a = 3; c = 1; f[x_] := a*x^2 - c; g[x_] := Tan[x] Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110] RealDigits[r] (* A200614 *) r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110] RealDigits[r] (* A200615 *) (* Program 2: implicit surface of u*x^2-v=tan(x) *) f[{x_, u_, v_}] := u*x^2 - v - Tan[x]; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1.55}]}, {u, 1, 20}, {v, -20, 0}]; ListPlot3D[Flatten[t, 1]] (* for A200614 *) CROSSREFS Cf. A200615, A200338. Sequence in context: A357528 A135005 A090734 * A011467 A246671 A069610 Adjacent sequences: A200611 A200612 A200613 * A200615 A200616 A200617 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 20 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 11 17:54 EDT 2024. Contains 375839 sequences. (Running on oeis4.)