login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200614
Decimal expansion of the lesser of two values of x satisfying 3*x^2 - 1 = tan(x) and 0 < x < Pi/2.
61
8, 3, 9, 5, 8, 2, 2, 5, 9, 0, 4, 5, 3, 0, 2, 9, 4, 1, 5, 1, 3, 7, 6, 4, 0, 0, 8, 8, 6, 3, 8, 0, 4, 9, 8, 6, 3, 0, 8, 4, 1, 6, 5, 4, 1, 0, 2, 6, 9, 4, 4, 0, 9, 0, 0, 3, 3, 4, 9, 1, 4, 3, 4, 0, 6, 7, 6, 5, 8, 4, 1, 4, 6, 1, 0, 4, 1, 1, 6, 7, 4, 2, 5, 9, 5, 3, 5, 3, 0, 0, 2, 3, 6, 6, 2, 4, 6, 0, 5
OFFSET
0,1
COMMENTS
For many choices of a and c, there are exactly two values of x satisfying a*x^2 - c = tan(x) and 0 < x < Pi/2; for other choices, there is exactly once such value.
Guide to related sequences, with graphs included in Mathematica programs:
a.... c.... x
3.... 1.... A200614, A200615
4.... 1.... A200616, A200617
5.... 1.... A200620, A200621
5.... 2.... A200622, A200623
5.... 3.... A200624, A200625
5.... 4.... A200626, A200627
5... -1.... A200628
5... -2.... A200629
5... -3.... A200630
5... -4.... A200631
6.... 1.... A200633, A200634
6.... 5.... A200635, A200636
6... -1.... A200637
6... -5.... A200638
1... -5.... A200239
2... -5.... A200240
3... -5.... A200241
4... -5.... A200242
2.... 0.... A200679, A200680
3.... 0.... A200681, A200682
4.... 0.... A200683, A200684
5.... 0.... A200618
6.... 0.... A200632
7.... 0.... A200643
8.... 0.... A200644
9.... 0.... A200645
10... 0.... A200646
-1... 1.... A200685
-1... 2.... A200686
-1... 3.... A200687
-1... 4.... A200688
-1... 5.... A200689
-1... 6.... A200690
-1... 7.... A200691
-1... 8.... A200692
-1... 9.... A200693
-1... 10... A200694
-2... 1.... A200695
-2... 3.... A200696
-3... 1.... A200697
-3... 2.... A200698
-4... 1.... A200699
-5... 1.... A200700
-6... 1.... A200701
-7... 1.... A200702
-8... 1.... A200703
-9... 1.... A200704
-10.. 1.... A200705
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A200614, take f(x,u,v) = u*x^2 - v = tan(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.
EXAMPLE
lesser: 0.839582259045302941513764008863804986308...
greater: 1.350956593976519397744696294368524715373...
MATHEMATICA
(* Program 1: A200614 and A200615 *)
a = 3; c = 1;
f[x_] := a*x^2 - c; g[x_] := Tan[x]
Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]
RealDigits[r] (* A200614 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]
RealDigits[r] (* A200615 *)
(* Program 2: implicit surface of u*x^2-v=tan(x) *)
f[{x_, u_, v_}] := u*x^2 - v - Tan[x];
t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1.55}]}, {u, 1, 20}, {v, -20, 0}];
ListPlot3D[Flatten[t, 1]] (* for A200614 *)
CROSSREFS
Sequence in context: A357528 A135005 A090734 * A011467 A246671 A069610
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 20 2011
STATUS
approved