

A200631


Decimal expansion of least x>0 satisfying 5*x^2+4=tan(x).


2



1, 5, 0, 5, 6, 7, 9, 7, 3, 4, 4, 8, 8, 3, 8, 7, 0, 0, 6, 2, 2, 6, 5, 5, 8, 5, 8, 7, 6, 7, 7, 6, 1, 2, 5, 6, 6, 5, 2, 3, 7, 8, 2, 2, 9, 0, 1, 8, 1, 6, 9, 5, 3, 9, 4, 7, 6, 1, 9, 6, 2, 9, 6, 8, 2, 9, 7, 6, 1, 9, 1, 2, 0, 1, 7, 9, 3, 4, 5, 1, 0, 7, 5, 9, 4, 8, 9, 5, 5, 5, 7, 3, 1, 6, 6, 6, 7, 3, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

See A200614 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=1.5056797344883870062265585876776125665237822901...


MATHEMATICA

a = 5; c = 4;
f[x_] := a*x^2  c; g[x_] := Tan[x]
Plot[{f[x], g[x]}, {x, .1, Pi/2}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.51}, WorkingPrecision > 110]
RealDigits[r] (* A200631 *)


CROSSREFS

Cf. A200338.
Sequence in context: A200397 A265302 A228764 * A201939 A256192 A154814
Adjacent sequences: A200628 A200629 A200630 * A200632 A200633 A200634


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Nov 20 2011


STATUS

approved



