The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200636 Decimal expansion of the greater of two values of x satisfying 6*x^2 - 5 = tan(x) and 0 < x < Pi/2. 3
 1, 4, 3, 5, 9, 7, 2, 7, 9, 7, 7, 4, 7, 7, 2, 7, 8, 3, 9, 7, 3, 7, 7, 5, 9, 5, 7, 1, 3, 6, 3, 1, 8, 0, 6, 3, 4, 7, 5, 2, 4, 1, 9, 4, 0, 1, 6, 2, 8, 5, 6, 2, 7, 2, 5, 4, 8, 4, 5, 2, 6, 7, 0, 5, 9, 8, 1, 8, 9, 4, 9, 9, 2, 6, 7, 0, 0, 1, 3, 6, 4, 5, 6, 5, 8, 9, 7, 8, 0, 1, 1, 3, 5, 1, 5, 1, 5, 6, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A200614 for a guide to related sequences. The Mathematica program includes a graph. LINKS Table of n, a(n) for n=1..99. EXAMPLE lesser: 1.0650216206187079002949359361195227... greater: 1.4359727977477278397377595713631806... MATHEMATICA a = 6; c = 5; f[x_] := a*x^2 - c; g[x_] := Tan[x] Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 1, 1.1}, WorkingPrecision -> 110] RealDigits[r] (* A200635 *) r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] RealDigits[r] (* A200636 *) CROSSREFS Cf. A200614. Sequence in context: A242910 A200350 A227684 * A229938 A226654 A124451 Adjacent sequences: A200633 A200634 A200635 * A200637 A200638 A200639 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 20 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 11 02:28 EDT 2024. Contains 375813 sequences. (Running on oeis4.)