|
|
A200636
|
|
Decimal expansion of the greater of two values of x satisfying 6*x^2 - 5 = tan(x) and 0 < x < Pi/2.
|
|
3
|
|
|
1, 4, 3, 5, 9, 7, 2, 7, 9, 7, 7, 4, 7, 7, 2, 7, 8, 3, 9, 7, 3, 7, 7, 5, 9, 5, 7, 1, 3, 6, 3, 1, 8, 0, 6, 3, 4, 7, 5, 2, 4, 1, 9, 4, 0, 1, 6, 2, 8, 5, 6, 2, 7, 2, 5, 4, 8, 4, 5, 2, 6, 7, 0, 5, 9, 8, 1, 8, 9, 4, 9, 9, 2, 6, 7, 0, 0, 1, 3, 6, 4, 5, 6, 5, 8, 9, 7, 8, 0, 1, 1, 3, 5, 1, 5, 1, 5, 6, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
See A200614 for a guide to related sequences. The Mathematica program includes a graph.
|
|
LINKS
|
|
|
EXAMPLE
|
lesser: 1.0650216206187079002949359361195227...
greater: 1.4359727977477278397377595713631806...
|
|
MATHEMATICA
|
a = 6; c = 5;
f[x_] := a*x^2 - c; g[x_] := Tan[x]
Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1, 1.1}, WorkingPrecision -> 110]
r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|