login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226654
Decimal expansion of the 1st Lebesgue constant L1.
5
1, 4, 3, 5, 9, 9, 1, 1, 2, 4, 1, 7, 6, 9, 1, 7, 4, 3, 2, 3, 5, 5, 9, 8, 6, 3, 2, 9, 9, 5, 9, 2, 7, 2, 2, 1, 6, 1, 2, 8, 1, 0, 6, 2, 9, 4, 0, 6, 6, 6, 1, 4, 6, 3, 8, 9, 3, 2, 0, 6, 5, 3, 7, 3, 9, 1, 5, 3, 9, 3, 9, 4, 0, 2, 7, 1, 8, 7, 2, 9, 2, 3, 0, 1, 4, 0, 9, 3, 3, 9, 0, 9, 7, 9, 6, 7, 5, 1, 1, 1, 7, 4, 8, 7
OFFSET
1,2
COMMENTS
Named after the French mathematician Henri Léon Lebesgue (1875-1941). - Amiram Eldar, Jun 19 2021
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, page 251.
LINKS
Henri Lebesgue, Sur la représentation trigonométrique approchée des fonctions satisfaisant à une condition de Lipschitz, Bulletin de la Société Mathématique de France, Vol. 38 (1910), pp. 184-210.
Eric Weisstein's MathWorld, Lebesgue constants.
FORMULA
Equals (1/Pi) * Integral_{t=0..Pi} abs(sin(3*t/2))/sin(t/2) dt.
Equals 1/3 + 2*sqrt(3)/Pi.
EXAMPLE
1.43599112417691743235598632995927221612810629406661463893206537391539394...
MATHEMATICA
RealDigits[1/3 + 2*Sqrt[3]/Pi, 10, 100][[1]]
CROSSREFS
Cf. A226655 (L2), A226656 (L3).
Sequence in context: A227684 A200636 A229938 * A124451 A277261 A140391
KEYWORD
cons,nonn
AUTHOR
STATUS
approved