

A226652


Numbers n such that 6n /+ 1 are twin prime pair and n = r + s where 6r /+ 1 and 6s / 1 are consecutive smaller pairs of twin primes.


1



3, 5, 12, 17, 110, 182, 217, 347, 352, 397, 432, 495, 707, 712, 775, 787, 822, 907, 920, 1115, 1127, 1265, 1370, 1500, 1722, 1810, 1860, 1953, 1995, 2167, 2742, 2943, 3087, 3372, 3713, 3840, 3985, 4030, 4153, 4580, 4762, 5093, 5750, 6018, 6540, 6920, 7263, 7355, 7367, 7378, 7637, 7957, 8727, 8932, 9002, 9340, 9368
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Terms in A002822 that are sum of some two subsequent terms.
Subsequence of terms of A225943 that are sum of some two subsequent terms, s2 = {17, 14745, 131010, 272125, 470573, 693635, 1393613, 1527925, 1953238, 3393075, 5219842, 5651810, 6662387, 10185065, 11332328, 11519365, 15051965}.
Is there similar subsequence s3 of s2, and so on?


LINKS

Zak Seidov, Table of n, a(n) for n = 1..10000


FORMULA

a(n) = (A225943(n)+1)/3.


EXAMPLE

a(2) = 5 because A002822(4) = 5 = A002822(2) + A002822(3) = 2 + 3.
a(3) = 12 because A002822(7) = 12 = A002822(4) + A002822(5) = 5 + 7.


CROSSREFS

Cf. A002822 ( 6 n /+ 1 are twin primes), A225943.
Sequence in context: A317100 A199932 A305552 * A024696 A295360 A197988
Adjacent sequences: A226649 A226650 A226651 * A226653 A226654 A226655


KEYWORD

nonn


AUTHOR

Zak Seidov, Jun 14 2013


STATUS

approved



