login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295360
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - 3*b(n-3), where a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6, and (a(n)) and (b(n)) are increasing complementary sequences.
2
1, 3, 5, 12, 18, 27, 41, 63, 98, 155, 247, 392, 628, 1008, 1624, 2620, 4228, 6831, 11041, 17853, 28874, 46706, 75559, 122244, 197778, 319996, 517747, 837715, 1355433, 2193118, 3548520, 5741606, 9290093, 15031665, 24321723
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295357 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
FORMULA
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
EXAMPLE
a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6, so that
b(3) = 7 (least "new number")
a(3) = a(1) + a(0) + b(2) + b(1) - 3* b(0) = 12
Complement: (b(n)) = (2, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, ...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; a[2] = 5; b[0] = 2; b[1] = 4; b[2] = 6;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] - 3*b[n - 3];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
z = 32; u = Table[a[n], {n, 0, z}] (* A295360 *)
v = Table[b[n], {n, 0, 10}] (* complement *)
CROSSREFS
Sequence in context: A305552 A226652 A024696 * A197988 A025088 A279784
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 21 2017
STATUS
approved