login
A279784
Twice partitioned numbers where the latter partitions are constant.
23
1, 1, 3, 5, 12, 18, 40, 60, 121, 186, 344, 524, 955, 1432, 2484, 3756, 6352, 9493, 15750, 23414, 38128, 56513, 90406, 133312, 211194, 309657, 484214, 708267, 1097159, 1597290, 2454245, 3560444, 5430091, 7854174, 11894335, 17151394, 25838413, 37145198, 55648059
OFFSET
0,3
COMMENTS
Also number of ways to choose a divisor of each part of an integer partition of n.
FORMULA
G.f.: exp(Sum_{k>=1} Sum_{j>=1} d(j)^k*x^(j*k)/k), where d(j) is the number of the divisors of j (A000005). - Ilya Gutkovskiy, Jul 17 2018
From Vaclav Kotesovec, Jul 28 2018: (Start)
a(n) ~ c * 2^(n/2), where
c = 203.986136154799274492709451797084688042886818134781591... if n is even and
c = 201.491703180375661735217350021245093454724452720559762... if n is odd.
In closed form, a(n) ~ ((2 + sqrt(2)) * Product_{k>=3} (1/(1 - tau(k) / 2^(k/2))) + (-1)^n * (2 - sqrt(2)) * Product_{k>=3} (1/(1 - (-1)^k * tau(k) / 2^(k/2)))) * 2^(n/2 - 1), where tau() is A000005. (End)
EXAMPLE
The a(4)=12 twice-partitions are:
((4)), ((3)(1)), ((2)(2)), ((22)),
((2)(1)(1)), ((2)(11)), ((11)(2)),
((1)(1)(1)(1)), ((11)(1)(1)), ((11)(11)), ((111)(1)), ((1111)).
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i-1)+`if`(i>n, 0, numtheory[tau](i)*b(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Dec 20 2016
MATHEMATICA
nn=20; CoefficientList[Series[Product[1/(1-DivisorSigma[0, n]x^n), {n, nn}], {x, 0, nn}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 18 2016
STATUS
approved