OFFSET
0,3
COMMENTS
Also number of ways to choose a divisor of each part of an integer partition of n.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..5000
FORMULA
G.f.: exp(Sum_{k>=1} Sum_{j>=1} d(j)^k*x^(j*k)/k), where d(j) is the number of the divisors of j (A000005). - Ilya Gutkovskiy, Jul 17 2018
From Vaclav Kotesovec, Jul 28 2018: (Start)
a(n) ~ c * 2^(n/2), where
c = 203.986136154799274492709451797084688042886818134781591... if n is even and
c = 201.491703180375661735217350021245093454724452720559762... if n is odd.
In closed form, a(n) ~ ((2 + sqrt(2)) * Product_{k>=3} (1/(1 - tau(k) / 2^(k/2))) + (-1)^n * (2 - sqrt(2)) * Product_{k>=3} (1/(1 - (-1)^k * tau(k) / 2^(k/2)))) * 2^(n/2 - 1), where tau() is A000005. (End)
EXAMPLE
The a(4)=12 twice-partitions are:
((4)), ((3)(1)), ((2)(2)), ((22)),
((2)(1)(1)), ((2)(11)), ((11)(2)),
((1)(1)(1)(1)), ((11)(1)(1)), ((11)(11)), ((111)(1)), ((1111)).
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i-1)+`if`(i>n, 0, numtheory[tau](i)*b(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Dec 20 2016
MATHEMATICA
nn=20; CoefficientList[Series[Product[1/(1-DivisorSigma[0, n]x^n), {n, nn}], {x, 0, nn}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 18 2016
STATUS
approved