login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082740
Square root of the sum of the terms of the n-th row of A082737.
4
1, 3, 5, 12, 19, 20, 25, 42, 39, 46, 73, 74, 79, 86, 95, 104, 141, 136, 143, 170, 171, 192, 197, 220, 225, 244, 255, 272, 303, 310, 325, 340, 357, 390, 399, 418, 455, 462, 473, 494, 549, 546, 579, 580, 599, 678, 651, 668, 705, 732, 737, 758, 825, 832, 833, 864
OFFSET
1,2
MAPLE
A082740 := proc(nmax) local T, a, n, r, i, rsum, c, j ; T := [1, 2, 7] ; a := [1, 3] ; n := 3 ; i := 1 ; while nops(a)< nmax do r := [] ; for c from 1 to n-1 do while ithprime(i) in T or ithprime(i) in r do i:= i+1 ; od ; r := [op(r), ithprime(i)] ; i:= i+1 ; od ; j := i+1 ; rsum := sum(op(k, r), k=1..nops(r)) ; while not issqr( rsum+ithprime(j)) do j := j+1 ; od ; r := [op(r), ithprime(j)] ; a := [op(a), sqrt(sum(op(l, r), l=1..nops(r)))] ; T := [op(T), op(r)] ; n := n+1 ; od ; RETURN(a) ; end: a := A082740(80) : for n from 1 to nops(a) do printf("%d, ", op(n, a)) ; od ; # R. J. Mathar, Nov 12 2006
MATHEMATICA
A082737[nmax_] := Module[{a, n, r, i, rsum, c, j}, a = {1, 2, 7}; n = 3; i = 1; While[Length[a] <= nmax, r = {}; For[c = 1, c <= n - 1, c++, While[MemberQ[a, Prime[i]] || MemberQ[r, Prime[i]], i++]; r = Append[r, Prime[i]]; i++]; j = i + 1; rsum = Total[r]; While[! IntegerQ@Sqrt[rsum + Prime[j]], j++]; r = Append[r, Prime[j]]; a = Join[a, r]; n++]; Return[a]];
rows = 56;
nmax = rows (rows + 1)/2;
tri = A082737[nmax];
T = Table[tri[[(n^2 - n + 2)/2 ;; n (n + 1)/2]], {n, 1, rows}];
a[n_] := Sqrt@Sum[T[[n, k]], {k, 1, n}];
Table[a[n], {n, 1, rows}] (* Jean-François Alcover, Apr 04 2024, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Apr 14 2003
EXTENSIONS
More terms from R. J. Mathar, Nov 12 2006
STATUS
approved