The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A198301 G.f.: exp( Sum_{n>=1} (x^n/n) * Sum_{d|n} d*sigma(n/d,d) ). 1
 1, 1, 3, 5, 12, 18, 42, 62, 131, 206, 398, 610, 1203, 1810, 3358, 5260, 9471, 14518, 26182, 39906, 70320, 108849, 187251, 287525, 497288, 758860, 1286936, 1986352, 3330677, 5102712, 8560107, 13070327, 21685731, 33328561, 54744685, 83792111, 137817745, 210223967 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Here sigma(n,k) is the sum of the k-th powers of the divisors of n. LINKS FORMULA G.f.: exp( Sum_{n>=1} Sum_{k>=1} sigma(n,k) * x^(n*k)/n ). Logarithmic derivative yields A198302. EXAMPLE G.f.: A(x) = 1 + x + 3*x^2 + 5*x^3 + 12*x^4 + 18*x^5 + 42*x^6 + 62*x^7 +... where the logarithm begins: log(A(x)) = x + 5*x^2/2 + 7*x^3/3 + 21*x^4/4 + 11*x^5/5 + 65*x^6/6 + 15*x^7/7 + 133*x^8/8 + 106*x^9/9 +...+ A198302(n)*x^n/n +... PROG (PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, sumdiv(m, d, d*sigma(m/d, d))*x^m/m)+x*O(x^n)), n)} (PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, sum(k=1, n\m, sigma(m, k)*x^(m*k)/m)+x*O(x^n))), n)} CROSSREFS Cf. A198302 (log), A198296. Sequence in context: A197988 A025088 A279784 * A323866 A082740 A010067 Adjacent sequences:  A198298 A198299 A198300 * A198302 A198303 A198304 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 27 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 30 06:21 EDT 2021. Contains 346348 sequences. (Running on oeis4.)