login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198296
G.f.: exp( Sum_{n>=1} (x^n/n) / Product_{d|n} (1 - d*x^n) ).
5
1, 1, 2, 3, 6, 8, 17, 22, 44, 62, 115, 154, 311, 409, 754, 1070, 1949, 2639, 4917, 6645, 12055, 16916, 29594, 40719, 73907, 100959, 176010, 248207, 429626, 594220, 1040624, 1436936, 2473555, 3486360, 5901887, 8233872, 14174779, 19689223, 33203829, 46967767
OFFSET
0,3
COMMENTS
Logarithmic derivative yields A198299.
LINKS
FORMULA
G.f.: exp( Sum_{n>=1} x^n/n * exp( Sum_{k>=1} sigma(n,k)*x^(n*k)/k ) ), where sigma(n,k) is the sum of the k-th powers of the divisors of n.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 17*x^6 + 22*x^7 +...
such that, by definition:
log(A(x)) = x/(1-x) + (x^2/2)/((1-x^2)*(1-2*x^2)) + (x^3/3)/((1-x^3)*(1-3*x^3)) + (x^4/4)/((1-x^4)*(1-2*x^4)*(1-4*x^4)) + (x^5/5)/((1-x^5)*(1-5*x^5)) + (x^6/6)/((1-x^6)*(1-2*x^6)*(1-3*x^6)*(1-6*x^6)) +...+ (x^n/n)/Product_{d|n} (1-d*x^n) +...
Also, we have the identity:
log(A(x)) = (1 + x + x^2 + x^3 + x^4 + x^5 +...)*x
+ (1 + 3*x^2 + 7*x^4 + 15*x^6 + 31*x^8 +...)*x^2/2
+ (1 + 4*x^3 + 13*x^6 + 40*x^9 + 121*x^12 +...)*x^3/3
+ (1 + 7*x^4 + 35*x^8 + 155*x^12 + 651*x^16 +...)*x^4/4
+ (1 + 6*x^5 + 31*x^10 + 156*x^15 + 781*x^20 +...)*x^5/5
+ (1 + 12*x^6 + 97*x^12 + 672*x^18 + 4333*x^24 +...)*x^6/6 +...
+ exp( Sum_{k>=1} sigma(n,k)*x^(n*k)/k )*x^n/n +...
Explicitly, the logarithm begins:
log(A(x)) = x + 3*x^2/2 + 4*x^3/3 + 11*x^4/4 + 6*x^5/5 + 36*x^6/6 + 8*x^7/7 + 83*x^8/8 + 49*x^9/9 + 178*x^10/10 +...+ A198299(n)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*exp(sum(k=1, n\m, sigma(m, k)*x^(m*k)/k)+x*O(x^n)))), n)}
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*exp(sumdiv(m, d, -log(1-d*x^m+x*O(x^n)))))), n)}
CROSSREFS
Sequence in context: A308546 A324737 A057574 * A276033 A327018 A329128
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 26 2012
STATUS
approved