login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185301
G.f.: exp( Sum_{n>=1} Sum_{k>=1} sigma(n)^k * x^(n*k) / n ).
3
1, 1, 3, 5, 14, 20, 59, 83, 229, 350, 878, 1302, 3479, 5068, 12640, 19357, 47547, 71173, 175029, 262445, 635297, 966680, 2288213, 3470143, 8266788, 12507003, 29283071, 44756825, 104067224, 158535387, 367088494, 559952784, 1287857188, 1971948577
OFFSET
0,3
FORMULA
Logarithmic derivative yields A185302.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 5*x^3 + 14*x^4 + 20*x^5 + 59*x^6 + 83*x^7 +...
such that, by definition:
log(A(x)) = (x + x^2 + x^3 + x^4 +...+ x^k +...)/1
+ (3*x^2 + 9*x^4 + 27*x^6 + 81*x^8 +...+ 3^k*x^(2*k) +...)/2
+ (4*x^3 + 16*x^6 + 64*x^9 + 256*x^12 +...+ 4^k*x^(3*k) +...)/3
+ (7*x^4 + 49*x^8 + 343*x^12 + 2401*x^16 +...+ 7^k*x^(4*k) +...)/4 +...
= x + 5*x^2/2 + 7*x^3/3 + 29*x^4/4 + 11*x^5/5 + 131*x^6/6 +...+ A185302(n)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=1, n\m, sigma(m)^k*x^(m*k)/m), x*O(x^n))), n)}
CROSSREFS
Cf. A185302.
Sequence in context: A331996 A179213 A074378 * A179304 A026645 A026667
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2012
STATUS
approved