login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185298
Expansion of e.g.f. x*exp(x)*exp(x*exp(x)).
7
0, 1, 4, 18, 92, 520, 3222, 21700, 157544, 1224576, 10133450, 88843084, 821832156, 7992373168, 81458868974, 867700216380, 9636146477648, 111323478770560, 1335253363581330, 16598183219157772, 213488758730421380, 2837046652845555696, 38899888173340835894
OFFSET
0,3
COMMENTS
a(n) is the number of ways to designate an element in each block of the set partitions of {1,2,...,n} and then designate a block.
Inverse binomial transform: b(n) = Sum (-1)^(n-k)*C(n,k)*a(k), k=0..n of A052512. - Alexander R. Povolotsky, Oct 01 2011
Number of pointed set partitions of pointed sets k[1...k...n] for any point k. - Gus Wiseman, Sep 27 2015
Exponential series reversal gives A207833 with alternating signs: 1, -4, 30, -332, 4880, ... . - Vladimir Reshetnikov, Aug 04 2019
FORMULA
E.g.f.: A(A(x)) where A(x) = x*exp(x).
a(n) = Sum_{k=1..n} binomial(n,k)*k^(n-k+1). - Vladimir Kruchinin, Sep 23 2011
O.g.f.: Sum_{k>=1} k*x^k/(1 - k*x)^(k+1). - Ilya Gutkovskiy, Oct 09 2018
a(n) ~ exp(r*exp(r) + r - n) * n^(n + 1/2) / (r^(n - 1/2) * sqrt(1 + exp(r)*(1 + 3*r + r^2))), where r = 2*LambertW(exp(1/4)*sqrt(n)/2) - 1/2 + 1/(16*LambertW(exp(1/4)*sqrt(n)/2)^2 + LambertW(exp(1/4)*sqrt(n)/2) - 1). - Vaclav Kotesovec, Mar 21 2023
EXAMPLE
The a(2) = 4 pointed set partitions are 1[1[12]], 1[1[1]2[2]], 2[1[1]2[2]], 2[2[12]].
The a(3) = 18 pointed set partitions are 1[1[123]], 1[1[1]2[23]], 1[1[1]3[23]], 1[1[12]3[3]], 1[1[13]2[2]], 1[1[1]2[2]3[3]], 2[2[123]], 2[1[1]2[23]], 2[1[13]2[2]], 2[2[2]3[13]], 2[2[12]3[3]], 2[1[1]2[2]3[3]], 3[3[123]], 3[1[1]3[23]], 3[1[12]3[3]], 3[2[2]3[13]], 3[2[12]3[3]], 3[1[1]2[2]3[3]].
MATHEMATICA
nn=30; a=x Exp[x]; Range[0, nn]! CoefficientList[Series[a Exp[a], {x, 0, nn}], x]
PROG
(PARI) x='x+O('x^33); concat([0], Vec(serlaplace(x*exp(x)*exp(x*exp(x))))) \\ Joerg Arndt, Oct 04 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Feb 20 2011
STATUS
approved