login
A185297
Consider all pairs of primes (p,q) with p+q = 2n, p <= q; a(n) is the sum of all the p's.
9
2, 3, 3, 8, 5, 10, 8, 12, 10, 19, 23, 23, 16, 31, 16, 36, 42, 26, 31, 48, 23, 48, 59, 42, 39, 71, 35, 62, 108, 53, 59, 96, 38, 83, 108, 91, 77, 127, 76, 107, 178, 85, 92, 217, 66, 127, 169, 87, 148, 204, 121, 148, 196, 134, 165, 268, 122, 168, 358, 136, 145, 340, 111, 219, 323, 206, 157, 282, 255, 272, 373, 246, 175, 486, 132, 260, 419
OFFSET
2,1
FORMULA
a(n) = Sum_{i=1..n} i * c(i) * c(2*n-i), where c = A010051. - Wesley Ivan Hurt, Apr 29 2021
a(n) = sopf(A362641(n)), n>=2. - Wesley Ivan Hurt, Apr 28 2023
EXAMPLE
2*5 = 10 can be expressed as the sum of two primes in two ways, 3+7 and 5+5, so a(5) = 3+5 = 8.
MAPLE
with(numtheory);
a:=n-> sum( (i)*( ((pi(i) - pi(i-1)) * (pi(2*n-i) - pi(2*n-i-1))) ), i = 1..n ); seq(a(k), k=1..100); # Wesley Ivan Hurt, Jan 20 2013
PROG
(PARI) a(n) = my(s=0); forprime(p=1, n, if (isprime(2*n-p), s += p)); s; \\ Michel Marcus, Apr 29 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 11 2011
STATUS
approved