login
A347823
Triangle read by rows: T(n,k) = (n+k+1)*binomial(n,k), 0 <= k <= n.
1
1, 2, 3, 3, 8, 5, 4, 15, 18, 7, 5, 24, 42, 32, 9, 6, 35, 80, 90, 50, 11, 7, 48, 135, 200, 165, 72, 13, 8, 63, 210, 385, 420, 273, 98, 15, 9, 80, 308, 672, 910, 784, 420, 128, 17, 10, 99, 432, 1092, 1764, 1890, 1344, 612, 162, 19, 11, 120, 585, 1680, 3150, 4032, 3570, 2160, 855, 200, 21
OFFSET
0,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
FORMULA
T(n,k) = A094727(n+1,k)*A007318(n,k).
Row g.f.: (1 + x)^(n-1)*(1 + n + x + 2*n*x). - Stefano Spezia, Jan 23 2022
EXAMPLE
Triangle begins:
1;
2, 3;
3, 8, 5;
4, 15, 18, 7;
5, 24, 42, 32, 9;
6, 35, 80, 90, 50, 11;
7, 48, 135, 200, 165, 72, 13;
8, 63, 210, 385, 420, 273, 98, 15;
...
PROG
(PARI) T(n, k) = (n+k+1)*binomial(n, k) \\ Andrew Howroyd, Jan 23 2022
CROSSREFS
Row sums give A053220.
Columns give A000027, A005563, A212343.
Diagonals give A005408, A001105, A059270, A112742.
Sequence in context: A078035 A295725 A132822 * A185297 A329803 A355196
KEYWORD
nonn,tabl
AUTHOR
Jules Beauchamp, Jan 23 2022
STATUS
approved