OFFSET
1,2
COMMENTS
All numbers m occur ceiling(m/2) times, see A004526.
The LCM of the n-th row is A076100. - Michel Marcus, Mar 18 2018
LINKS
Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened
Bruno Berselli, Illustration of the initial terms.
László Németh, On the Binomial Interpolated Triangles, Journal of Integer Sequences, Vol. 20 (2017), Article 17.7.8.
Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
FORMULA
T(n+1, k) = T(n, k) + 1 = T(n, k+1); T(n+1, k+1) = T(n, k) + 2.
Sum_{k=1..n} T(n, k) = A000326(n) (row sums).
As a sequence rather than as a table: If m = floor((sqrt(8n-7)+1)/2), a(n) = n - m*(m-3)/2 - 1. - Carl R. White, Jul 30 2009
T(n, k) = n+k-1, n >= k >= 1. - Vincenzo Librandi, Nov 23 2009 [corrected by Klaus Brockhaus, Nov 23 2009]
From Boris Putievskiy, Jan 16 2013: (Start)
a(n) = i+t, where i=n-t*(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). (End)
From G. C. Greubel, Mar 10 2024: (Start)
T(3*n-3, n) = A016813(n-1).
T(4*n-4, n) = A016861(n-1).
Sum_{k=0..n-1} (-1)^k*T(n, k) = A319556(n).
Sum_{k=0..floor((n-1)/2)} T(n-k, k) = A093005(n).
Sum_{k=0..floor((n-1)/2)} (-1)^k*T(n-k, k) = A078112(n-1).
Sum_{j=1..n} (Sum_{k=0..n-1} T(j, k)) = A002411(n) (sum of n rows). (End)
EXAMPLE
Triangle begins:
1;
2, 3;
3, 4, 5;
4, 5, 6, 7;
5, 6, 7, 8, 9;
6, 7, 8, 9, 10, 11;
7, 8, 9, 10, 11, 12, 13;
8, 9, 10, 11, 12, 13, 14, 15;
9, 10, 11, 12, 13, 14, 15, 16, 17;
... - Philippe Deléham, Mar 30 2013
MATHEMATICA
Table[n + Range[0, n-1], {n, 12}]//Flatten (* Michael De Vlieger, Dec 16 2016 *)
PROG
(Magma) z:=12; &cat[ [m+n-1: m in [1..n] ]: n in [1..z] ];
(Haskell)
a094727 n k = n + k
a094727_row n = a094727_tabl !! (n-1)
a094727_tabl = iterate (\row@(h:_) -> (h + 1) : map (+ 2) row) [1]
-- Reinhard Zumkeller, Jul 22 2012
(SageMath) flatten([[n+k for k in range(n)] for n in range(1, 16)]) # G. C. Greubel, Mar 10 2024
CROSSREFS
Cf. A128076 (rows reversed).
KEYWORD
AUTHOR
Reinhard Zumkeller, May 24 2004
STATUS
approved