login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214661
Odd numbers obtained by transposing the left half of A176271 into rows of a triangle: T(n,k) = A176271(n - 1 + k, k), 1 <= k <= n.
9
1, 3, 9, 7, 15, 25, 13, 23, 35, 49, 21, 33, 47, 63, 81, 31, 45, 61, 79, 99, 121, 43, 59, 77, 97, 119, 143, 169, 57, 75, 95, 117, 141, 167, 195, 225, 73, 93, 115, 139, 165, 193, 223, 255, 289, 91, 113, 137, 163, 191, 221, 253, 287, 323, 361, 111, 135, 161, 189, 219, 251, 285, 321, 359, 399, 441
OFFSET
1,2
LINKS
FORMULA
T(n, k) = (n+k)^2 - 3*n - k + 1.
T(n,k) = A176271(n+k-1, k).
T(n, k) = A214604(n,k) - 2*A025581(n,k).
T(n, k) = 2*A000290(A094727(n,k)) - A214604(n,k).
T(2*n-1, n) = A214675() (main diagonal).
T(n,1) = A002061(n).
T(n,n) = A016754(n-1).
Sum_{k=1..n} T(n, k) = A051673(n) (row sums).
EXAMPLE
. Take the first n elements of the n-th diagonal (northwest to
. southeast) of the triangle on the left side
. and write this as n-th row on the triangle of the right side.
. 1: 1 1
. 2: 3 _ 3 9
. 3: 7 9 __ 7 15 25
. 4: 13 15 __ __ 13 23 35 49
. 5: 21 23 25 __ __ 21 33 47 63 ..
. 6: 31 33 35 __ __ __ 31 45 61 .. .. ..
. 7: 43 45 47 49 __ __ __ 43 59 .. .. .. .. ..
. 8: 57 59 61 63 __ __ __ __ 57 .. .. .. .. .. .. .. .
MATHEMATICA
Table[(n+k)^2-3*n-k+1, {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Mar 10 2024 *)
PROG
(Haskell)
import Data.List (transpose)
a214661 n k = a214661_tabl !! (n-1) !! (k-1)
a214661_row n = a214661_tabl !! (n-1)
a214661_tabl = zipWith take [1..] $ transpose $ map reverse a176271_tabl
(Magma) [(n+k)^2-3*n-k+1: k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 10 2024
(SageMath) flatten([[(n+k)^2-3*n-k+1 for k in range(1, n+1)] for n in range(1, 16)]) // G. C. Greubel, Mar 10 2024
CROSSREFS
Cf. A051673 (row sums), A214675 (main diagonal).
Sequence in context: A267363 A146179 A294734 * A178414 A220654 A302158
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Jul 25 2012
STATUS
approved